Chun-Ling Zhang, Dao Su, Habuer Wang, Tegshi Muschin, Yun Wu, Yong-Sheng Bao, Huai-Yong Zhu
{"title":"煤系高岭土上固定化铜配合物活化C(sp3)-H键催化丙烯酯合成","authors":"Chun-Ling Zhang, Dao Su, Habuer Wang, Tegshi Muschin, Yun Wu, Yong-Sheng Bao, Huai-Yong Zhu","doi":"10.3390/molecules30102232","DOIUrl":null,"url":null,"abstract":"<p><p>Copper complexes have attracted significant interest for catalyzing oxidative dehydrogenative carboxylation of alkanes to form esters. Here, we report a heterogeneous catalyst, in which copper complexes are immobilized on coal-bearing kaolin for the synthesis of allylic esters via C(<i>sp</i><sup>3</sup>)-H bond activation through cross-dehydrogenation coupling reactions between cyclic alkanes and aromatic carboxylic acids. Systematic optimization of reaction conditions-including catalyst loading, copper content, oxidant, temperature, and reaction time-resulted in a high yield of 71% of allylic ester, comparable to homogeneous transition metal catalysts. The catalyst is easily recoverable via centrifugation and retains its activity over five consecutive reuse cycles. This system demonstrates broad substrate compatibility with various aromatic carboxylic acids and cyclic alkanes. Beyond offering an efficient and reusable catalytic route for allylic ester synthesis, this work highlights the potential of coal-bearing kaolin as a sustainable support material for transition metal catalysis and provides an environmentally benign method for activating inert C(<i>sp<sup>3</sup></i>)-H bonds.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immobilized Copper Complexes on Coal-Bearing Kaolin for Catalyzing Allylic Ester Synthesis via C(<i>sp</i><sup>3</sup>)-H Bond Activation.\",\"authors\":\"Chun-Ling Zhang, Dao Su, Habuer Wang, Tegshi Muschin, Yun Wu, Yong-Sheng Bao, Huai-Yong Zhu\",\"doi\":\"10.3390/molecules30102232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copper complexes have attracted significant interest for catalyzing oxidative dehydrogenative carboxylation of alkanes to form esters. Here, we report a heterogeneous catalyst, in which copper complexes are immobilized on coal-bearing kaolin for the synthesis of allylic esters via C(<i>sp</i><sup>3</sup>)-H bond activation through cross-dehydrogenation coupling reactions between cyclic alkanes and aromatic carboxylic acids. Systematic optimization of reaction conditions-including catalyst loading, copper content, oxidant, temperature, and reaction time-resulted in a high yield of 71% of allylic ester, comparable to homogeneous transition metal catalysts. The catalyst is easily recoverable via centrifugation and retains its activity over five consecutive reuse cycles. This system demonstrates broad substrate compatibility with various aromatic carboxylic acids and cyclic alkanes. Beyond offering an efficient and reusable catalytic route for allylic ester synthesis, this work highlights the potential of coal-bearing kaolin as a sustainable support material for transition metal catalysis and provides an environmentally benign method for activating inert C(<i>sp<sup>3</sup></i>)-H bonds.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 10\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30102232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30102232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Immobilized Copper Complexes on Coal-Bearing Kaolin for Catalyzing Allylic Ester Synthesis via C(sp3)-H Bond Activation.
Copper complexes have attracted significant interest for catalyzing oxidative dehydrogenative carboxylation of alkanes to form esters. Here, we report a heterogeneous catalyst, in which copper complexes are immobilized on coal-bearing kaolin for the synthesis of allylic esters via C(sp3)-H bond activation through cross-dehydrogenation coupling reactions between cyclic alkanes and aromatic carboxylic acids. Systematic optimization of reaction conditions-including catalyst loading, copper content, oxidant, temperature, and reaction time-resulted in a high yield of 71% of allylic ester, comparable to homogeneous transition metal catalysts. The catalyst is easily recoverable via centrifugation and retains its activity over five consecutive reuse cycles. This system demonstrates broad substrate compatibility with various aromatic carboxylic acids and cyclic alkanes. Beyond offering an efficient and reusable catalytic route for allylic ester synthesis, this work highlights the potential of coal-bearing kaolin as a sustainable support material for transition metal catalysis and provides an environmentally benign method for activating inert C(sp3)-H bonds.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.