万古霉素和庆大霉素对聚氨酯表面金黄色葡萄球菌生物膜的协同作用。

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Nicolas Henrique Borges, Paula Hansen Suss, Gabriel Burato Ortis, Leticia Ramos Dantas, Felipe Francisco Tuon
{"title":"万古霉素和庆大霉素对聚氨酯表面金黄色葡萄球菌生物膜的协同作用。","authors":"Nicolas Henrique Borges, Paula Hansen Suss, Gabriel Burato Ortis, Leticia Ramos Dantas, Felipe Francisco Tuon","doi":"10.3390/microorganisms13051119","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> are frequently associated with biofilm formation on intravascular devices. Biofilms limit antimicrobial penetration and promote phenotypic resistance, challenging conventional treatment strategies. Vancomycin (VAN) and gentamicin (GEN) have been used clinically, but their combined antibiofilm activity remains underexplored. This study evaluates the efficacy of VAN and GEN, alone and in combination, against biofilms formed by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and methicillin-sensitive <i>S. aureus</i> (MSSA) on polyurethane. MICs were determined for VAN and GEN. Biofilm biomass and metabolic activity were quantified using crystal violet and MTT assays, respectively. Biofilm viability was assessed through fluorescence microscopy and a modified Calgary Biofilm Device. A continuous-flow peristaltic model was developed to test treatment under simulated catheter conditions. While monotherapy with VAN or GEN had modest effects, their combination significantly reduced biomass and metabolic activity. VAN 20 mg/L + GEN 8 mg/L and VAN 40 mg/L + GEN 8 mg/L achieved over 70% reduction in MRSA biofilm viability and complete eradication in MBEC assays. Dynamic model assays confirmed biofilm reduction with combination therapy. The combination of VAN/GEN exhibits synergistic antibiofilm activity against <i>S. aureus</i>, particularly MRSA. These findings support its potential application in catheter salvage strategies, including antibiotic lock therapy.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 5","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Activity of Vancomycin and Gentamicin Against <i>Staphylococcus aureus</i> Biofilms on Polyurethane Surface.\",\"authors\":\"Nicolas Henrique Borges, Paula Hansen Suss, Gabriel Burato Ortis, Leticia Ramos Dantas, Felipe Francisco Tuon\",\"doi\":\"10.3390/microorganisms13051119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Staphylococcus aureus</i> are frequently associated with biofilm formation on intravascular devices. Biofilms limit antimicrobial penetration and promote phenotypic resistance, challenging conventional treatment strategies. Vancomycin (VAN) and gentamicin (GEN) have been used clinically, but their combined antibiofilm activity remains underexplored. This study evaluates the efficacy of VAN and GEN, alone and in combination, against biofilms formed by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and methicillin-sensitive <i>S. aureus</i> (MSSA) on polyurethane. MICs were determined for VAN and GEN. Biofilm biomass and metabolic activity were quantified using crystal violet and MTT assays, respectively. Biofilm viability was assessed through fluorescence microscopy and a modified Calgary Biofilm Device. A continuous-flow peristaltic model was developed to test treatment under simulated catheter conditions. While monotherapy with VAN or GEN had modest effects, their combination significantly reduced biomass and metabolic activity. VAN 20 mg/L + GEN 8 mg/L and VAN 40 mg/L + GEN 8 mg/L achieved over 70% reduction in MRSA biofilm viability and complete eradication in MBEC assays. Dynamic model assays confirmed biofilm reduction with combination therapy. The combination of VAN/GEN exhibits synergistic antibiofilm activity against <i>S. aureus</i>, particularly MRSA. These findings support its potential application in catheter salvage strategies, including antibiotic lock therapy.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13051119\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13051119","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金黄色葡萄球菌常与血管内装置上的生物膜形成有关。生物膜限制了抗菌药物的渗透,促进了表型耐药性,挑战了传统的治疗策略。万古霉素(VAN)和庆大霉素(GEN)已在临床上使用,但它们的联合抗生素膜活性仍未得到充分研究。本研究评估了VAN和GEN单独或联合使用对耐甲氧西林金黄色葡萄球菌(MRSA)和甲氧西林敏感金黄色葡萄球菌(MSSA)在聚氨酯上形成的生物膜的效果。测定了VAN和gen的mic,分别用结晶紫法和MTT法测定了生物膜生物量和代谢活性。通过荧光显微镜和改良的卡尔加里生物膜装置评估生物膜的活力。建立了一个连续流动的蠕动模型来测试在模拟导管条件下的治疗。虽然VAN或GEN单药治疗效果一般,但它们的联合显著降低了生物量和代谢活性。在MBEC试验中,VAN 20 mg/L + GEN 8 mg/L和VAN 40 mg/L + GEN 8 mg/L的MRSA生物膜活力降低70%以上,并完全根除。动态模型分析证实联合治疗可减少生物膜。VAN/GEN组合对金黄色葡萄球菌,特别是MRSA表现出协同抗菌膜活性。这些发现支持其在导管抢救策略中的潜在应用,包括抗生素锁定治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Activity of Vancomycin and Gentamicin Against Staphylococcus aureus Biofilms on Polyurethane Surface.

Staphylococcus aureus are frequently associated with biofilm formation on intravascular devices. Biofilms limit antimicrobial penetration and promote phenotypic resistance, challenging conventional treatment strategies. Vancomycin (VAN) and gentamicin (GEN) have been used clinically, but their combined antibiofilm activity remains underexplored. This study evaluates the efficacy of VAN and GEN, alone and in combination, against biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) on polyurethane. MICs were determined for VAN and GEN. Biofilm biomass and metabolic activity were quantified using crystal violet and MTT assays, respectively. Biofilm viability was assessed through fluorescence microscopy and a modified Calgary Biofilm Device. A continuous-flow peristaltic model was developed to test treatment under simulated catheter conditions. While monotherapy with VAN or GEN had modest effects, their combination significantly reduced biomass and metabolic activity. VAN 20 mg/L + GEN 8 mg/L and VAN 40 mg/L + GEN 8 mg/L achieved over 70% reduction in MRSA biofilm viability and complete eradication in MBEC assays. Dynamic model assays confirmed biofilm reduction with combination therapy. The combination of VAN/GEN exhibits synergistic antibiofilm activity against S. aureus, particularly MRSA. These findings support its potential application in catheter salvage strategies, including antibiotic lock therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信