通过自稀释微流控芯片进行耐药性研究和即时诊断的快速抗菌药物敏感性试验。

IF 9.9 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Jenny Ka-Hei Wat, Miao Xu, Lang Nan, Haisong Lin, Kelvin Kai-Wang To, Ho Cheung Shum, Sammer Uɩ Hassan
{"title":"通过自稀释微流控芯片进行耐药性研究和即时诊断的快速抗菌药物敏感性试验。","authors":"Jenny Ka-Hei Wat, Miao Xu, Lang Nan, Haisong Lin, Kelvin Kai-Wang To, Ho Cheung Shum, Sammer Uɩ Hassan","doi":"10.1038/s41378-025-00938-y","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a global public health issue. Rapid and accurate antimicrobial susceptibility tests (AST) on bacteria isolates would facilitate appropriate choice of antibiotics, in which patients receive appropriate treatment and the emergence of multidrug-resistant organisms could be prevented simultaneously. In this study, we have developed a microfluidic device named Self Dilution for Faster Antimicrobial Susceptibility Testing (SDFAST). This SlipChip-based device consists of two layers of microchips, allowing injection of bacterial suspension and antibiotics by simply connecting the two chips. By slipping one microchip against another in a single press of the microchip, the antibiotics can be diluted within seconds and be well mixed with bacterial samples. By combining SDFAST with a water-soluble tetrazolium salt-8 (WST-8) assay, a range of clinically prevalent bacteria, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Staphylococci species, were tested under various antibiotics. Color analysis after 4-6 h of incubation showed an abrupt change in the WST-8 color of certain wells with diluted antibiotics, proving that instrument-free and immediate identification of minimum inhibitory concentration (MIC) could be achieved. The testing on 51 clinical isolates had an agreement of 92%, proving the accuracy of our method. These results validated its advantages of simple operation, rapid testing, and low sample consumption comparing to conventional methods, which require 16-24 h of incubation. Therefore, our method shows great potential to be further developed into a medical instrument for automated medical testing and point-of-care diagnosis.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"110"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117033/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid antimicrobial susceptibility tests performed by self-diluting microfluidic chips for drug resistance studies and point-of-care diagnostics.\",\"authors\":\"Jenny Ka-Hei Wat, Miao Xu, Lang Nan, Haisong Lin, Kelvin Kai-Wang To, Ho Cheung Shum, Sammer Uɩ Hassan\",\"doi\":\"10.1038/s41378-025-00938-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) is a global public health issue. Rapid and accurate antimicrobial susceptibility tests (AST) on bacteria isolates would facilitate appropriate choice of antibiotics, in which patients receive appropriate treatment and the emergence of multidrug-resistant organisms could be prevented simultaneously. In this study, we have developed a microfluidic device named Self Dilution for Faster Antimicrobial Susceptibility Testing (SDFAST). This SlipChip-based device consists of two layers of microchips, allowing injection of bacterial suspension and antibiotics by simply connecting the two chips. By slipping one microchip against another in a single press of the microchip, the antibiotics can be diluted within seconds and be well mixed with bacterial samples. By combining SDFAST with a water-soluble tetrazolium salt-8 (WST-8) assay, a range of clinically prevalent bacteria, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Staphylococci species, were tested under various antibiotics. Color analysis after 4-6 h of incubation showed an abrupt change in the WST-8 color of certain wells with diluted antibiotics, proving that instrument-free and immediate identification of minimum inhibitory concentration (MIC) could be achieved. The testing on 51 clinical isolates had an agreement of 92%, proving the accuracy of our method. These results validated its advantages of simple operation, rapid testing, and low sample consumption comparing to conventional methods, which require 16-24 h of incubation. Therefore, our method shows great potential to be further developed into a medical instrument for automated medical testing and point-of-care diagnosis.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"110\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00938-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00938-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性(AMR)是一个全球性的公共卫生问题。对细菌分离株进行快速和准确的抗菌素敏感性试验将有助于适当选择抗生素,使患者得到适当治疗,同时防止多重耐药生物的出现。在这项研究中,我们开发了一种微流控装置,名为自稀释快速抗菌药物敏感性测试(SDFAST)。这种基于slipchip的设备由两层微芯片组成,只需将两层芯片连接起来,就可以注射细菌悬浮液和抗生素。通过将一个微晶片滑动到另一个微晶片上,抗生素可以在几秒钟内被稀释,并与细菌样本充分混合。通过将SDFAST与水溶性四唑盐-8 (WST-8)检测相结合,在各种抗生素下检测了一系列临床流行的细菌,包括鲍曼不动杆菌、大肠杆菌、肺炎克雷伯菌和葡萄球菌。孵育4-6 h后的颜色分析显示,稀释抗生素的某些孔的WST-8颜色突然变化,证明可以实现无仪器和即时识别最小抑制浓度(MIC)。51株临床分离株的检测结果一致性达92%,证明了该方法的准确性。这些结果验证了该方法与常规方法相比操作简单,检测快速,样品消耗低,需要16-24 h的孵育。因此,我们的方法显示出很大的潜力,可以进一步发展成为自动化医疗测试和即时诊断的医疗仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid antimicrobial susceptibility tests performed by self-diluting microfluidic chips for drug resistance studies and point-of-care diagnostics.

Antimicrobial resistance (AMR) is a global public health issue. Rapid and accurate antimicrobial susceptibility tests (AST) on bacteria isolates would facilitate appropriate choice of antibiotics, in which patients receive appropriate treatment and the emergence of multidrug-resistant organisms could be prevented simultaneously. In this study, we have developed a microfluidic device named Self Dilution for Faster Antimicrobial Susceptibility Testing (SDFAST). This SlipChip-based device consists of two layers of microchips, allowing injection of bacterial suspension and antibiotics by simply connecting the two chips. By slipping one microchip against another in a single press of the microchip, the antibiotics can be diluted within seconds and be well mixed with bacterial samples. By combining SDFAST with a water-soluble tetrazolium salt-8 (WST-8) assay, a range of clinically prevalent bacteria, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Staphylococci species, were tested under various antibiotics. Color analysis after 4-6 h of incubation showed an abrupt change in the WST-8 color of certain wells with diluted antibiotics, proving that instrument-free and immediate identification of minimum inhibitory concentration (MIC) could be achieved. The testing on 51 clinical isolates had an agreement of 92%, proving the accuracy of our method. These results validated its advantages of simple operation, rapid testing, and low sample consumption comparing to conventional methods, which require 16-24 h of incubation. Therefore, our method shows great potential to be further developed into a medical instrument for automated medical testing and point-of-care diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信