{"title":"革兰氏阳性菌脂肪酸的合成和利用:来自枯草芽孢杆菌的见解。","authors":"María Cecilia Mansilla, Diego de Mendoza","doi":"10.1128/mmbr.00069-23","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYThe bacterial cytoplasmic membrane, consisting of roughly equal proportions of proteins and lipids, plays a crucial role in cellular growth, metabolism, and maintaining the cytoplasmic boundary. It is a dynamic, fluid matrix that separates intracellular compartments, where lipids and proteins coexist in a highly organized yet flexible arrangement. Membrane fluidity, defined as the inverse of viscosity, determines how rapidly molecules diffuse within the membrane at a given temperature. This property is vital for protein mobility and biomolecular interactions. Structurally, the membrane primarily comprises a lamellar lipid bilayer, with glycerophospholipids and fatty acids forming its core framework. In <i>Bacillus subtilis</i>, a key model organism for studying gram-positive bacterial physiology, major membrane lipids include phospholipids, glycolipids, and lipoteichoic acids, the latter anchored to diacylglycerol glycolipids. This review examines the synthesis and regulation of membrane lipids in <i>B. subtilis</i>, with a focus on fatty acid biosynthesis, its diversification, and post-synthetic modifications such as desaturation. It also explores the production of phosphatidic acid and the integration of fatty acid and phospholipid biosynthesis. We review the well-characterized pathway of cold-induced membrane lipid modification in <i>B. subtilis</i>, arguably the best-studied model system for temperature sensing. This pathway is tightly linked to transcriptional responses triggered by changes in bilayer viscosity, detected by a membrane-associated thermosensor. Finally, this review highlights the importance of fatty acid biosynthesis in <i>B. subtilis</i> differentiation and its contributions to the production of biotin and lipoic acid, two universal cofactors essential for fatty acid synthesis and intermediary metabolism.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0006923"},"PeriodicalIF":7.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fatty acid synthesis and utilization in gram-positive bacteria: insights from <i>Bacillus subtilis</i>.\",\"authors\":\"María Cecilia Mansilla, Diego de Mendoza\",\"doi\":\"10.1128/mmbr.00069-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SUMMARYThe bacterial cytoplasmic membrane, consisting of roughly equal proportions of proteins and lipids, plays a crucial role in cellular growth, metabolism, and maintaining the cytoplasmic boundary. It is a dynamic, fluid matrix that separates intracellular compartments, where lipids and proteins coexist in a highly organized yet flexible arrangement. Membrane fluidity, defined as the inverse of viscosity, determines how rapidly molecules diffuse within the membrane at a given temperature. This property is vital for protein mobility and biomolecular interactions. Structurally, the membrane primarily comprises a lamellar lipid bilayer, with glycerophospholipids and fatty acids forming its core framework. In <i>Bacillus subtilis</i>, a key model organism for studying gram-positive bacterial physiology, major membrane lipids include phospholipids, glycolipids, and lipoteichoic acids, the latter anchored to diacylglycerol glycolipids. This review examines the synthesis and regulation of membrane lipids in <i>B. subtilis</i>, with a focus on fatty acid biosynthesis, its diversification, and post-synthetic modifications such as desaturation. It also explores the production of phosphatidic acid and the integration of fatty acid and phospholipid biosynthesis. We review the well-characterized pathway of cold-induced membrane lipid modification in <i>B. subtilis</i>, arguably the best-studied model system for temperature sensing. This pathway is tightly linked to transcriptional responses triggered by changes in bilayer viscosity, detected by a membrane-associated thermosensor. Finally, this review highlights the importance of fatty acid biosynthesis in <i>B. subtilis</i> differentiation and its contributions to the production of biotin and lipoic acid, two universal cofactors essential for fatty acid synthesis and intermediary metabolism.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0006923\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00069-23\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00069-23","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Fatty acid synthesis and utilization in gram-positive bacteria: insights from Bacillus subtilis.
SUMMARYThe bacterial cytoplasmic membrane, consisting of roughly equal proportions of proteins and lipids, plays a crucial role in cellular growth, metabolism, and maintaining the cytoplasmic boundary. It is a dynamic, fluid matrix that separates intracellular compartments, where lipids and proteins coexist in a highly organized yet flexible arrangement. Membrane fluidity, defined as the inverse of viscosity, determines how rapidly molecules diffuse within the membrane at a given temperature. This property is vital for protein mobility and biomolecular interactions. Structurally, the membrane primarily comprises a lamellar lipid bilayer, with glycerophospholipids and fatty acids forming its core framework. In Bacillus subtilis, a key model organism for studying gram-positive bacterial physiology, major membrane lipids include phospholipids, glycolipids, and lipoteichoic acids, the latter anchored to diacylglycerol glycolipids. This review examines the synthesis and regulation of membrane lipids in B. subtilis, with a focus on fatty acid biosynthesis, its diversification, and post-synthetic modifications such as desaturation. It also explores the production of phosphatidic acid and the integration of fatty acid and phospholipid biosynthesis. We review the well-characterized pathway of cold-induced membrane lipid modification in B. subtilis, arguably the best-studied model system for temperature sensing. This pathway is tightly linked to transcriptional responses triggered by changes in bilayer viscosity, detected by a membrane-associated thermosensor. Finally, this review highlights the importance of fatty acid biosynthesis in B. subtilis differentiation and its contributions to the production of biotin and lipoic acid, two universal cofactors essential for fatty acid synthesis and intermediary metabolism.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.