apozed谐振器的优化研究。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-04-27 DOI:10.3390/mi16050511
Ana Valenzuela-Pérez, Carlos Collado, Jordi Mateu
{"title":"apozed谐振器的优化研究。","authors":"Ana Valenzuela-Pérez, Carlos Collado, Jordi Mateu","doi":"10.3390/mi16050511","DOIUrl":null,"url":null,"abstract":"<p><p>Bulk Acoustic Wave (BAW) resonators are essential components in modern RF communication systems due to their high selectivity and quality factor. However, spurious resonances caused by Lamb wave mode propagation along the in-plane directions degrade the filter performance. Traditional Finite Element Method (FEM) simulations provide accurate modeling but are computationally expensive, especially for arbitrarily shaped resonators and solidly mounted resonators (SMRs), whose stack of materials is composed of many thin layers of different materials. To address this, we extend a previously published model (named the Quasi-3D model), which employs the Transmission Line Matrix (TLM) method, enabling efficient simulations of complex geometries with more precise meshing. The new approach allows us to simulate different geometries, and we will show several apodized geometries with the aim of minimizing the lateral modes. In addition, the proposed approach significantly reduces the computational cost while maintaining high accuracy, as validated by FEM comparisons and experimental measurements.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113813/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards the Optimization of Apodized Resonators.\",\"authors\":\"Ana Valenzuela-Pérez, Carlos Collado, Jordi Mateu\",\"doi\":\"10.3390/mi16050511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bulk Acoustic Wave (BAW) resonators are essential components in modern RF communication systems due to their high selectivity and quality factor. However, spurious resonances caused by Lamb wave mode propagation along the in-plane directions degrade the filter performance. Traditional Finite Element Method (FEM) simulations provide accurate modeling but are computationally expensive, especially for arbitrarily shaped resonators and solidly mounted resonators (SMRs), whose stack of materials is composed of many thin layers of different materials. To address this, we extend a previously published model (named the Quasi-3D model), which employs the Transmission Line Matrix (TLM) method, enabling efficient simulations of complex geometries with more precise meshing. The new approach allows us to simulate different geometries, and we will show several apodized geometries with the aim of minimizing the lateral modes. In addition, the proposed approach significantly reduces the computational cost while maintaining high accuracy, as validated by FEM comparisons and experimental measurements.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113813/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16050511\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050511","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

体声波(BAW)谐振器因其高选择性和高质量因数而成为现代射频通信系统的重要组成部分。然而,兰姆波模式沿平面方向传播引起的杂散共振降低了滤波器的性能。传统的有限元方法(FEM)模拟提供了精确的建模,但计算成本很高,特别是对于任意形状的谐振器和固体安装的谐振器(smr),其堆叠材料由许多不同材料的薄层组成。为了解决这个问题,我们扩展了先前发布的模型(命名为准3d模型),该模型采用传输线矩阵(TLM)方法,能够通过更精确的网格划分有效地模拟复杂几何形状。新方法允许我们模拟不同的几何形状,我们将展示几种apodized几何形状,目的是最小化横向模态。此外,通过有限元比较和实验测量验证了该方法在保持较高精度的同时显著降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the Optimization of Apodized Resonators.

Bulk Acoustic Wave (BAW) resonators are essential components in modern RF communication systems due to their high selectivity and quality factor. However, spurious resonances caused by Lamb wave mode propagation along the in-plane directions degrade the filter performance. Traditional Finite Element Method (FEM) simulations provide accurate modeling but are computationally expensive, especially for arbitrarily shaped resonators and solidly mounted resonators (SMRs), whose stack of materials is composed of many thin layers of different materials. To address this, we extend a previously published model (named the Quasi-3D model), which employs the Transmission Line Matrix (TLM) method, enabling efficient simulations of complex geometries with more precise meshing. The new approach allows us to simulate different geometries, and we will show several apodized geometries with the aim of minimizing the lateral modes. In addition, the proposed approach significantly reduces the computational cost while maintaining high accuracy, as validated by FEM comparisons and experimental measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信