用于表面形貌和温度测绘的高分辨率热通量激光雷达。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-05-18 DOI:10.3390/mi16050590
Xuhui Huang, Raheel Ahmed Janjua, Sailing He
{"title":"用于表面形貌和温度测绘的高分辨率热通量激光雷达。","authors":"Xuhui Huang, Raheel Ahmed Janjua, Sailing He","doi":"10.3390/mi16050590","DOIUrl":null,"url":null,"abstract":"<p><p>Common surface temperature measurement techniques, when applied to monitoring the temperature of surfaces with complex morphology, suffer from reduced spatial resolution, which compromises the measurement accuracy of the system. To improve the spatial resolution of temperature measurement technology and maintain high temperature sensitivity, we designed a microscopic morphology thermometric LiDAR (MMTL) system based on the Scheimpflug principle, which realizes the real-time restoration of the 3D morphology and temperature of the surface of micro-structured objects. The 3D spatial resolution of the system is better than 3 μm. The theoretical resolution of the self-designed reflective spectrometer can reach 0.9 nm, which improves the sensitivity and accuracy of the upconversion hybrid nanomaterials thermometry based on the intensity ratio. In the wide temperature range of 373.15-508.15 K, the highest relative temperature sensitivity can reach 2.07%/K, the optimal temperature resolution is 0.0131 K, and the error is less than 1 K. Finally, the temperature change trend of the mold surface under different heating voltages is accurately restored. The MMTL system can provide accurate temperature distribution data and hotspot location identification for scenarios such as optimizing thermal management design and real-time risk monitoring, and it has application potential in industrial manufacturing and for electronic products.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114382/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Thermometric Scheimpflug LiDAR for Surface Morphology and Temperature Mapping.\",\"authors\":\"Xuhui Huang, Raheel Ahmed Janjua, Sailing He\",\"doi\":\"10.3390/mi16050590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Common surface temperature measurement techniques, when applied to monitoring the temperature of surfaces with complex morphology, suffer from reduced spatial resolution, which compromises the measurement accuracy of the system. To improve the spatial resolution of temperature measurement technology and maintain high temperature sensitivity, we designed a microscopic morphology thermometric LiDAR (MMTL) system based on the Scheimpflug principle, which realizes the real-time restoration of the 3D morphology and temperature of the surface of micro-structured objects. The 3D spatial resolution of the system is better than 3 μm. The theoretical resolution of the self-designed reflective spectrometer can reach 0.9 nm, which improves the sensitivity and accuracy of the upconversion hybrid nanomaterials thermometry based on the intensity ratio. In the wide temperature range of 373.15-508.15 K, the highest relative temperature sensitivity can reach 2.07%/K, the optimal temperature resolution is 0.0131 K, and the error is less than 1 K. Finally, the temperature change trend of the mold surface under different heating voltages is accurately restored. The MMTL system can provide accurate temperature distribution data and hotspot location identification for scenarios such as optimizing thermal management design and real-time risk monitoring, and it has application potential in industrial manufacturing and for electronic products.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16050590\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

常用的表面温度测量技术在监测具有复杂形貌的表面温度时,存在空间分辨率降低的问题,影响了系统的测量精度。为了提高测温技术的空间分辨率并保持较高的温度灵敏度,基于Scheimpflug原理设计了一种显微形貌测温激光雷达(MMTL)系统,实现了对微结构物体表面三维形貌和温度的实时还原。系统三维空间分辨率大于3 μm。自行设计的反射光谱仪理论分辨率可达0.9 nm,提高了基于强度比的上转换混合纳米材料测温的灵敏度和精度。在373.15 ~ 508.15 K的宽温度范围内,相对温度灵敏度最高可达2.07%/K,最佳温度分辨率为0.0131 K,误差小于1 K。最后,准确还原了不同加热电压下模具表面的温度变化趋势。MMTL系统可为优化热管理设计和实时风险监测等场景提供准确的温度分布数据和热点位置识别,在工业制造和电子产品领域具有应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Resolution Thermometric Scheimpflug LiDAR for Surface Morphology and Temperature Mapping.

Common surface temperature measurement techniques, when applied to monitoring the temperature of surfaces with complex morphology, suffer from reduced spatial resolution, which compromises the measurement accuracy of the system. To improve the spatial resolution of temperature measurement technology and maintain high temperature sensitivity, we designed a microscopic morphology thermometric LiDAR (MMTL) system based on the Scheimpflug principle, which realizes the real-time restoration of the 3D morphology and temperature of the surface of micro-structured objects. The 3D spatial resolution of the system is better than 3 μm. The theoretical resolution of the self-designed reflective spectrometer can reach 0.9 nm, which improves the sensitivity and accuracy of the upconversion hybrid nanomaterials thermometry based on the intensity ratio. In the wide temperature range of 373.15-508.15 K, the highest relative temperature sensitivity can reach 2.07%/K, the optimal temperature resolution is 0.0131 K, and the error is less than 1 K. Finally, the temperature change trend of the mold surface under different heating voltages is accurately restored. The MMTL system can provide accurate temperature distribution data and hotspot location identification for scenarios such as optimizing thermal management design and real-time risk monitoring, and it has application potential in industrial manufacturing and for electronic products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信