{"title":"直流电场中弯曲粒子的介电相互作用。","authors":"Zhiwei Huang, Tong Zhang, Jing Feng, Yage Wang","doi":"10.3390/mi16050596","DOIUrl":null,"url":null,"abstract":"<p><p>In practical dielectrophoretic cell interaction experiments, cells do not always exhibit circular or rod-like shapes, making the study of dielectrophoretic interactions among irregularly shaped particles of significant importance. We established a mathematical model for curved particles to analyze their mutual dielectrophoretic interactions, incorporating particle deformability by varying their shear modulus, and employed the arbitrary Lagrangian-Eulerian method to describe particle motion and deformation. The results demonstrate that under the influence of a direct current electric field, curved particles undergo rotation, deformation, and mutual attraction due to dielectrophoresis, eventually forming a stable alignment parallel to the applied electric field. Adjusting the electric field strength effectively modulates the interaction intensity and movement velocity between particles. This study elucidates the fundamental principles governing dielectrophoretic interactions among deformable curved particles in DC electric fields, providing theoretical guidance for dielectrophoretic manipulation experiments involving biological cells, metallic particles, and other entities under DC electric fields.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dielectrophoretic Interactions of Curved Particles in a DC Electric Field.\",\"authors\":\"Zhiwei Huang, Tong Zhang, Jing Feng, Yage Wang\",\"doi\":\"10.3390/mi16050596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In practical dielectrophoretic cell interaction experiments, cells do not always exhibit circular or rod-like shapes, making the study of dielectrophoretic interactions among irregularly shaped particles of significant importance. We established a mathematical model for curved particles to analyze their mutual dielectrophoretic interactions, incorporating particle deformability by varying their shear modulus, and employed the arbitrary Lagrangian-Eulerian method to describe particle motion and deformation. The results demonstrate that under the influence of a direct current electric field, curved particles undergo rotation, deformation, and mutual attraction due to dielectrophoresis, eventually forming a stable alignment parallel to the applied electric field. Adjusting the electric field strength effectively modulates the interaction intensity and movement velocity between particles. This study elucidates the fundamental principles governing dielectrophoretic interactions among deformable curved particles in DC electric fields, providing theoretical guidance for dielectrophoretic manipulation experiments involving biological cells, metallic particles, and other entities under DC electric fields.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16050596\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050596","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
The Dielectrophoretic Interactions of Curved Particles in a DC Electric Field.
In practical dielectrophoretic cell interaction experiments, cells do not always exhibit circular or rod-like shapes, making the study of dielectrophoretic interactions among irregularly shaped particles of significant importance. We established a mathematical model for curved particles to analyze their mutual dielectrophoretic interactions, incorporating particle deformability by varying their shear modulus, and employed the arbitrary Lagrangian-Eulerian method to describe particle motion and deformation. The results demonstrate that under the influence of a direct current electric field, curved particles undergo rotation, deformation, and mutual attraction due to dielectrophoresis, eventually forming a stable alignment parallel to the applied electric field. Adjusting the electric field strength effectively modulates the interaction intensity and movement velocity between particles. This study elucidates the fundamental principles governing dielectrophoretic interactions among deformable curved particles in DC electric fields, providing theoretical guidance for dielectrophoretic manipulation experiments involving biological cells, metallic particles, and other entities under DC electric fields.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.