智能手表用3D超薄玻璃部件精密成型仿真研究。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-05-16 DOI:10.3390/mi16050584
Xinfeng Zhao, Shunchang Hu, Peiyan Sun, Wuyi Ming
{"title":"智能手表用3D超薄玻璃部件精密成型仿真研究。","authors":"Xinfeng Zhao, Shunchang Hu, Peiyan Sun, Wuyi Ming","doi":"10.3390/mi16050584","DOIUrl":null,"url":null,"abstract":"<p><p>High stress and shape deviation during the glass forming process often led to low yield rates, posing a challenge in the production of high-precision smartwatch components. To address this issue, a numerical model was developed to simulate and analyze the forming behavior of 3D curved glass. The study focused on achieving a balance between energy consumption and key quality attributes, such as residual stress and shape accuracy. Results showed that forming pressure primarily affects shape deviation, while forming temperature plays a dominant role in energy usage and residual stress. Through orthogonal experiments, optimal parameters were identified: a forming temperature of 630 °C, pressure of 0.25 MPa, and cooling rate of 0.25 °C/s effectively minimize residual stress. Meanwhile, shape deviation is minimized at 630 °C, 0.30 MPa, and a cooling rate of 0.75 °C/s. Energy efficiency analysis indicated that low efficiency occurs at 610 °C with a 3 °C/s heating rate. Furthermore, NSGA-II multi-objective optimization validated the model's accuracy, with prediction errors under 20%, offering valuable guidance for the precise fabrication of smartwatch glass.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision Molding Simulation Study of 3D Ultra-Thin Glass Components for Smartwatches.\",\"authors\":\"Xinfeng Zhao, Shunchang Hu, Peiyan Sun, Wuyi Ming\",\"doi\":\"10.3390/mi16050584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High stress and shape deviation during the glass forming process often led to low yield rates, posing a challenge in the production of high-precision smartwatch components. To address this issue, a numerical model was developed to simulate and analyze the forming behavior of 3D curved glass. The study focused on achieving a balance between energy consumption and key quality attributes, such as residual stress and shape accuracy. Results showed that forming pressure primarily affects shape deviation, while forming temperature plays a dominant role in energy usage and residual stress. Through orthogonal experiments, optimal parameters were identified: a forming temperature of 630 °C, pressure of 0.25 MPa, and cooling rate of 0.25 °C/s effectively minimize residual stress. Meanwhile, shape deviation is minimized at 630 °C, 0.30 MPa, and a cooling rate of 0.75 °C/s. Energy efficiency analysis indicated that low efficiency occurs at 610 °C with a 3 °C/s heating rate. Furthermore, NSGA-II multi-objective optimization validated the model's accuracy, with prediction errors under 20%, offering valuable guidance for the precise fabrication of smartwatch glass.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16050584\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050584","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

玻璃成形过程中的高应力和形状偏差往往导致成品率低,给高精度智能手表部件的生产带来挑战。为了解决这一问题,建立了三维曲面玻璃成形过程的数值模拟模型。该研究的重点是实现能源消耗和关键质量属性之间的平衡,如残余应力和形状精度。结果表明:成形压力主要影响形状偏差,而成形温度对能量消耗和残余应力起主导作用;通过正交试验,确定了成形温度为630℃、压力为0.25 MPa、冷却速度为0.25℃/s的最佳工艺参数,可有效降低残余应力。同时,在630℃,0.30 MPa, 0.75℃/s的冷却速率下,形状偏差最小。能效分析表明,在升温速率为3℃/s、升温温度为610℃时,效率较低。此外,NSGA-II多目标优化验证了模型的准确性,预测误差在20%以下,为智能手表玻璃的精密制造提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precision Molding Simulation Study of 3D Ultra-Thin Glass Components for Smartwatches.

High stress and shape deviation during the glass forming process often led to low yield rates, posing a challenge in the production of high-precision smartwatch components. To address this issue, a numerical model was developed to simulate and analyze the forming behavior of 3D curved glass. The study focused on achieving a balance between energy consumption and key quality attributes, such as residual stress and shape accuracy. Results showed that forming pressure primarily affects shape deviation, while forming temperature plays a dominant role in energy usage and residual stress. Through orthogonal experiments, optimal parameters were identified: a forming temperature of 630 °C, pressure of 0.25 MPa, and cooling rate of 0.25 °C/s effectively minimize residual stress. Meanwhile, shape deviation is minimized at 630 °C, 0.30 MPa, and a cooling rate of 0.75 °C/s. Energy efficiency analysis indicated that low efficiency occurs at 610 °C with a 3 °C/s heating rate. Furthermore, NSGA-II multi-objective optimization validated the model's accuracy, with prediction errors under 20%, offering valuable guidance for the precise fabrication of smartwatch glass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信