Le Liu, Wanjin Yu, Zheren Zhang, Qiyao Li, Chun Peng, Kaisheng Wu, Duoduo Liu, Sufang He, Nengsheng Liu, Xiang Li
{"title":"超声波辅助K+改性工业大麻秸秆水热生物炭对Pb2的高效吸附","authors":"Le Liu, Wanjin Yu, Zheren Zhang, Qiyao Li, Chun Peng, Kaisheng Wu, Duoduo Liu, Sufang He, Nengsheng Liu, Xiang Li","doi":"10.3390/ma18102348","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar modification represents an effective approach for enhancing adsorption capacity. In the research, industrial hemp straw-derived biochar was synthesized through hydrothermal carbonization coupled with ultrasound-assisted KOH activation, demonstrating exceptional Pb<sup>2+</sup> adsorption efficiency. The optimal HBS50-K0.5M exhibited excellent adsorption performance, achieving the maximum adsorption capacity of 345.8 mg/g within 2 h. The etching effect of KOH on the biochar surface increased the O-containing functional groups, which enhanced the adsorption of Pb<sup>2+</sup>. The adsorption kinetics revealed that the adsorption process of Pb<sup>2+</sup> was aligned with the pseudo-second-order kinetics as well as the Langmuir model. The complexation, ion exchange, π-π interaction, as well as electrostatic interaction participated in the adsorption. This study demonstrates that ultrasound-assisted KOH-activated biochar has great potential for removing Pb<sup>2+</sup> from wastewater.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic-Assisted K<sup>+</sup> Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb<sup>2</sup>.\",\"authors\":\"Le Liu, Wanjin Yu, Zheren Zhang, Qiyao Li, Chun Peng, Kaisheng Wu, Duoduo Liu, Sufang He, Nengsheng Liu, Xiang Li\",\"doi\":\"10.3390/ma18102348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biochar modification represents an effective approach for enhancing adsorption capacity. In the research, industrial hemp straw-derived biochar was synthesized through hydrothermal carbonization coupled with ultrasound-assisted KOH activation, demonstrating exceptional Pb<sup>2+</sup> adsorption efficiency. The optimal HBS50-K0.5M exhibited excellent adsorption performance, achieving the maximum adsorption capacity of 345.8 mg/g within 2 h. The etching effect of KOH on the biochar surface increased the O-containing functional groups, which enhanced the adsorption of Pb<sup>2+</sup>. The adsorption kinetics revealed that the adsorption process of Pb<sup>2+</sup> was aligned with the pseudo-second-order kinetics as well as the Langmuir model. The complexation, ion exchange, π-π interaction, as well as electrostatic interaction participated in the adsorption. This study demonstrates that ultrasound-assisted KOH-activated biochar has great potential for removing Pb<sup>2+</sup> from wastewater.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18102348\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18102348","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrasonic-Assisted K+ Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb2.
Biochar modification represents an effective approach for enhancing adsorption capacity. In the research, industrial hemp straw-derived biochar was synthesized through hydrothermal carbonization coupled with ultrasound-assisted KOH activation, demonstrating exceptional Pb2+ adsorption efficiency. The optimal HBS50-K0.5M exhibited excellent adsorption performance, achieving the maximum adsorption capacity of 345.8 mg/g within 2 h. The etching effect of KOH on the biochar surface increased the O-containing functional groups, which enhanced the adsorption of Pb2+. The adsorption kinetics revealed that the adsorption process of Pb2+ was aligned with the pseudo-second-order kinetics as well as the Langmuir model. The complexation, ion exchange, π-π interaction, as well as electrostatic interaction participated in the adsorption. This study demonstrates that ultrasound-assisted KOH-activated biochar has great potential for removing Pb2+ from wastewater.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.