高温干燥引起的材料性质变化——玉米棒材案例研究。

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-05-15 DOI:10.3390/ma18102302
Marek Wróbel, Marcin Jewiarz, Jozef Krilek, Luiza Dmochowska-Kuc
{"title":"高温干燥引起的材料性质变化——玉米棒材案例研究。","authors":"Marek Wróbel, Marcin Jewiarz, Jozef Krilek, Luiza Dmochowska-Kuc","doi":"10.3390/ma18102302","DOIUrl":null,"url":null,"abstract":"<p><p>Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it is important to keep the lignin intact. It is responsible for particle adhesion. This paper presents a study focused on high-temperature drying of maize cobs. The process temperatures were selected from a range between 60 and 220 °C. The upper temperature limit prevents significant lignin breakdown. We also do not exceed the self-ignition temperature of the raw material. The study analyzed changes in basic technical parameters. These include moisture content, ash content, volatile matter, and HHV. We tested the grinding and densification process. We measured the raw material's particle size distribution (PSD), specific density, and the mechanical durability (DU) of the agglomerates. The study showed a positive effect of high-temperature drying on the technical parameters. We found that the drying of corn cobs at a temperature of 180 °C gives the best results. Both PSD and DU values indicate that it is possible to create quality compacted biofuels from this material.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material Properties Changes Caused by High Temperature Drying-Corn Cobs Case Study.\",\"authors\":\"Marek Wróbel, Marcin Jewiarz, Jozef Krilek, Luiza Dmochowska-Kuc\",\"doi\":\"10.3390/ma18102302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it is important to keep the lignin intact. It is responsible for particle adhesion. This paper presents a study focused on high-temperature drying of maize cobs. The process temperatures were selected from a range between 60 and 220 °C. The upper temperature limit prevents significant lignin breakdown. We also do not exceed the self-ignition temperature of the raw material. The study analyzed changes in basic technical parameters. These include moisture content, ash content, volatile matter, and HHV. We tested the grinding and densification process. We measured the raw material's particle size distribution (PSD), specific density, and the mechanical durability (DU) of the agglomerates. The study showed a positive effect of high-temperature drying on the technical parameters. We found that the drying of corn cobs at a temperature of 180 °C gives the best results. Both PSD and DU values indicate that it is possible to create quality compacted biofuels from this material.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18102302\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18102302","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物质是一种具有可变物理化学性质的能源。热处理降低水分和挥发物含量。它们还提高了高热值(HHV)。这对于具有低能源潜力的农业废物,如玉米棒子,尤其可取。为了从生物质中制造颗粒,保持木质素的完整是很重要的。它负责颗粒的粘附。本文对玉米穗轴高温干燥进行了研究。工艺温度从60°C到220°C之间选择。温度上限防止显著的木质素分解。我们也不超过原料的自燃温度。研究分析了基本技术参数的变化。这些指标包括水分含量、灰分含量、挥发物和HHV。我们测试了研磨和致密化过程。我们测量了原料的粒度分布(PSD)、比密度和团聚体的机械耐久性(DU)。研究表明,高温干燥对工艺参数有积极影响。我们发现在180°C的温度下烘干玉米芯效果最好。PSD和DU值都表明,用这种材料制造高质量的压缩生物燃料是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material Properties Changes Caused by High Temperature Drying-Corn Cobs Case Study.

Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it is important to keep the lignin intact. It is responsible for particle adhesion. This paper presents a study focused on high-temperature drying of maize cobs. The process temperatures were selected from a range between 60 and 220 °C. The upper temperature limit prevents significant lignin breakdown. We also do not exceed the self-ignition temperature of the raw material. The study analyzed changes in basic technical parameters. These include moisture content, ash content, volatile matter, and HHV. We tested the grinding and densification process. We measured the raw material's particle size distribution (PSD), specific density, and the mechanical durability (DU) of the agglomerates. The study showed a positive effect of high-temperature drying on the technical parameters. We found that the drying of corn cobs at a temperature of 180 °C gives the best results. Both PSD and DU values indicate that it is possible to create quality compacted biofuels from this material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信