Sudi Wang, Jianxia Wang, Jie Wang, Jian Xu, Yinghao Miao, Qing Ma, Linbing Wang, Tao Liu
{"title":"用离散元法表征沥青混合料中的力分布和力链拓扑。","authors":"Sudi Wang, Jianxia Wang, Jie Wang, Jian Xu, Yinghao Miao, Qing Ma, Linbing Wang, Tao Liu","doi":"10.3390/ma18102347","DOIUrl":null,"url":null,"abstract":"<p><p>The force chain network within asphalt mixtures serves as the primary load-bearing structure to resist external forces. The objective of this study is to quantitatively characterize the contact force distribution and force chain topology structure. The discrete element method (DEM) was employed to construct simulation models for two stone matrix asphalt (SMA) and two open-graded friction course (OGFC) mixtures. Load distribution characteristics, including average contact force, load bearing contribution and contact force angle, and force chain topological network parameters, clustering coefficient, edge betweenness and average path length, were analyzed to elucidate the load transfer mechanisms. The findings of the present study demonstrate that the average contact force between aggregate-aggregate contact types in specific particle sizes significantly exceeds the average contact force of the same particle size aggregates. For SMA16 and OGFC16 asphalt mixtures, the load-bearing contribution of aggregates initially increases and then decreases with decreasing particle size, peaking at 13.2 mm. SMA13 and OGFC13 mixtures demonstrate a consistent decline in load bearing contribution with decreasing aggregate size. The analysis of the force chain network topology of the asphalt mixture reveals that SMA mixtures exhibited higher average clustering coefficients in force chain topological features in comparison to OGFC mixtures. It indicates that SMA gradations have superior skeletal load-bearing structures. While the maximum nominal aggregate size minimally influences the average path length with a relative change rate of 3%, the gradation type exerts a more substantial impact, exhibiting a relative change rate of 7% to 9%. These findings confirm that SMA mixtures have more stable load-bearing structures than OGFC mixtures. The proposed topological parameters effectively capture structural distinctions in force chain networks, offering insights for optimizing gradation design and enhancing mechanical performance.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Force Distribution and Force Chain Topology in Asphalt Mixtures Using the Discrete Element Method.\",\"authors\":\"Sudi Wang, Jianxia Wang, Jie Wang, Jian Xu, Yinghao Miao, Qing Ma, Linbing Wang, Tao Liu\",\"doi\":\"10.3390/ma18102347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The force chain network within asphalt mixtures serves as the primary load-bearing structure to resist external forces. The objective of this study is to quantitatively characterize the contact force distribution and force chain topology structure. The discrete element method (DEM) was employed to construct simulation models for two stone matrix asphalt (SMA) and two open-graded friction course (OGFC) mixtures. Load distribution characteristics, including average contact force, load bearing contribution and contact force angle, and force chain topological network parameters, clustering coefficient, edge betweenness and average path length, were analyzed to elucidate the load transfer mechanisms. The findings of the present study demonstrate that the average contact force between aggregate-aggregate contact types in specific particle sizes significantly exceeds the average contact force of the same particle size aggregates. For SMA16 and OGFC16 asphalt mixtures, the load-bearing contribution of aggregates initially increases and then decreases with decreasing particle size, peaking at 13.2 mm. SMA13 and OGFC13 mixtures demonstrate a consistent decline in load bearing contribution with decreasing aggregate size. The analysis of the force chain network topology of the asphalt mixture reveals that SMA mixtures exhibited higher average clustering coefficients in force chain topological features in comparison to OGFC mixtures. It indicates that SMA gradations have superior skeletal load-bearing structures. While the maximum nominal aggregate size minimally influences the average path length with a relative change rate of 3%, the gradation type exerts a more substantial impact, exhibiting a relative change rate of 7% to 9%. These findings confirm that SMA mixtures have more stable load-bearing structures than OGFC mixtures. The proposed topological parameters effectively capture structural distinctions in force chain networks, offering insights for optimizing gradation design and enhancing mechanical performance.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18102347\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18102347","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Characterization of Force Distribution and Force Chain Topology in Asphalt Mixtures Using the Discrete Element Method.
The force chain network within asphalt mixtures serves as the primary load-bearing structure to resist external forces. The objective of this study is to quantitatively characterize the contact force distribution and force chain topology structure. The discrete element method (DEM) was employed to construct simulation models for two stone matrix asphalt (SMA) and two open-graded friction course (OGFC) mixtures. Load distribution characteristics, including average contact force, load bearing contribution and contact force angle, and force chain topological network parameters, clustering coefficient, edge betweenness and average path length, were analyzed to elucidate the load transfer mechanisms. The findings of the present study demonstrate that the average contact force between aggregate-aggregate contact types in specific particle sizes significantly exceeds the average contact force of the same particle size aggregates. For SMA16 and OGFC16 asphalt mixtures, the load-bearing contribution of aggregates initially increases and then decreases with decreasing particle size, peaking at 13.2 mm. SMA13 and OGFC13 mixtures demonstrate a consistent decline in load bearing contribution with decreasing aggregate size. The analysis of the force chain network topology of the asphalt mixture reveals that SMA mixtures exhibited higher average clustering coefficients in force chain topological features in comparison to OGFC mixtures. It indicates that SMA gradations have superior skeletal load-bearing structures. While the maximum nominal aggregate size minimally influences the average path length with a relative change rate of 3%, the gradation type exerts a more substantial impact, exhibiting a relative change rate of 7% to 9%. These findings confirm that SMA mixtures have more stable load-bearing structures than OGFC mixtures. The proposed topological parameters effectively capture structural distinctions in force chain networks, offering insights for optimizing gradation design and enhancing mechanical performance.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.