Ruixuan Yang, Yiming Dang, Jinhao Chen, Dan Li, Francesco Svelto
{"title":"短距离CMOS低功耗光收发器。","authors":"Ruixuan Yang, Yiming Dang, Jinhao Chen, Dan Li, Francesco Svelto","doi":"10.3390/mi16050587","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of the AI era driven by Large Language Models (LLMs) and the next-generation high-definition multimedia interface for immersive technologies (AR/VR/metaverse) have created an unprecedented demand for high-bandwidth interconnects. While optical communication systems provide a broad bandwidth, their relatively low power efficiency continues to limit their deployment in new applications. This work addresses the power efficiency challenges in CMOS optical transceiver design, leveraging the inherent cost and integration advantages of CMOS technology. After outlining the design principles for low-power optical transmitter (Tx) and receiver (Rx) design, we present a comprehensive design of a low-power optical transceiver chipset implemented in 28 nm CMOS. The Tx features a high-impedance asymmetric current-steering output stage with a stacked architecture that facilitates unipolar power supply operation for the efficient anode driving of a common-cathode VCSEL array and achieved a power efficiency of 1.59 pJ/bit. The Rx incorporates a tail-current-controlled Cherry-Hooper-based variable gain amplifier (VGA), which achieved a transimpedance gain that ranged from 68.4 to 78.5 dBΩ and a power efficiency of 1.06 pJ/bit. The Rx-Tx back-to-back measurements confirmed successful data transmission at 4 × 20 Gbps, which demonstrated an overall power efficiency of 2.65 pJ/bit.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114449/pdf/","citationCount":"0","resultStr":"{\"title\":\"CMOS Low-Power Optical Transceiver for Short Reach.\",\"authors\":\"Ruixuan Yang, Yiming Dang, Jinhao Chen, Dan Li, Francesco Svelto\",\"doi\":\"10.3390/mi16050587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of the AI era driven by Large Language Models (LLMs) and the next-generation high-definition multimedia interface for immersive technologies (AR/VR/metaverse) have created an unprecedented demand for high-bandwidth interconnects. While optical communication systems provide a broad bandwidth, their relatively low power efficiency continues to limit their deployment in new applications. This work addresses the power efficiency challenges in CMOS optical transceiver design, leveraging the inherent cost and integration advantages of CMOS technology. After outlining the design principles for low-power optical transmitter (Tx) and receiver (Rx) design, we present a comprehensive design of a low-power optical transceiver chipset implemented in 28 nm CMOS. The Tx features a high-impedance asymmetric current-steering output stage with a stacked architecture that facilitates unipolar power supply operation for the efficient anode driving of a common-cathode VCSEL array and achieved a power efficiency of 1.59 pJ/bit. The Rx incorporates a tail-current-controlled Cherry-Hooper-based variable gain amplifier (VGA), which achieved a transimpedance gain that ranged from 68.4 to 78.5 dBΩ and a power efficiency of 1.06 pJ/bit. The Rx-Tx back-to-back measurements confirmed successful data transmission at 4 × 20 Gbps, which demonstrated an overall power efficiency of 2.65 pJ/bit.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114449/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16050587\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050587","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
CMOS Low-Power Optical Transceiver for Short Reach.
The emergence of the AI era driven by Large Language Models (LLMs) and the next-generation high-definition multimedia interface for immersive technologies (AR/VR/metaverse) have created an unprecedented demand for high-bandwidth interconnects. While optical communication systems provide a broad bandwidth, their relatively low power efficiency continues to limit their deployment in new applications. This work addresses the power efficiency challenges in CMOS optical transceiver design, leveraging the inherent cost and integration advantages of CMOS technology. After outlining the design principles for low-power optical transmitter (Tx) and receiver (Rx) design, we present a comprehensive design of a low-power optical transceiver chipset implemented in 28 nm CMOS. The Tx features a high-impedance asymmetric current-steering output stage with a stacked architecture that facilitates unipolar power supply operation for the efficient anode driving of a common-cathode VCSEL array and achieved a power efficiency of 1.59 pJ/bit. The Rx incorporates a tail-current-controlled Cherry-Hooper-based variable gain amplifier (VGA), which achieved a transimpedance gain that ranged from 68.4 to 78.5 dBΩ and a power efficiency of 1.06 pJ/bit. The Rx-Tx back-to-back measurements confirmed successful data transmission at 4 × 20 Gbps, which demonstrated an overall power efficiency of 2.65 pJ/bit.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.