Ramses Seferino Trigo Torres, Lawrence Kulinsky, Arash Kheradvar
{"title":"用新型多喷嘴挤出打印机表征曲面上沉积的涂层。","authors":"Ramses Seferino Trigo Torres, Lawrence Kulinsky, Arash Kheradvar","doi":"10.3390/mi16050505","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, additive manufacturing has advanced significantly, enabling rapid fabrication of functional components across various applications. In medical devices, it has been used for prototyping, prosthetics, drug delivery platforms, and more recently, tissue scaffolding. However, current technologies face challenges, particularly in depositing conformal layers over curved surfaces. This study introduces a novel multi-nozzle extrusion printer concept designed to deposit soft gel layers onto curved surfaces. A custom clearance locking mechanism enhances the printer's ability to achieve conformal coatings on both flat and curved substrates. We investigate key deposition parameters, including displacement volume and nozzle configuration, while comparing two deposition sequences: \"Press and Express\" and \"Express and Press\". Our results demonstrate that the \"Express and Press\" technique yields more uniform, merged conformal layers than the \"Press and Express\" method. This technology holds promise for further refinement and potential applications in tissue engineering.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Coating Layers Deposited onto Curved Surfaces Using a Novel Multi-Nozzle Extrusion Printer.\",\"authors\":\"Ramses Seferino Trigo Torres, Lawrence Kulinsky, Arash Kheradvar\",\"doi\":\"10.3390/mi16050505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past two decades, additive manufacturing has advanced significantly, enabling rapid fabrication of functional components across various applications. In medical devices, it has been used for prototyping, prosthetics, drug delivery platforms, and more recently, tissue scaffolding. However, current technologies face challenges, particularly in depositing conformal layers over curved surfaces. This study introduces a novel multi-nozzle extrusion printer concept designed to deposit soft gel layers onto curved surfaces. A custom clearance locking mechanism enhances the printer's ability to achieve conformal coatings on both flat and curved substrates. We investigate key deposition parameters, including displacement volume and nozzle configuration, while comparing two deposition sequences: \\\"Press and Express\\\" and \\\"Express and Press\\\". Our results demonstrate that the \\\"Express and Press\\\" technique yields more uniform, merged conformal layers than the \\\"Press and Express\\\" method. This technology holds promise for further refinement and potential applications in tissue engineering.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16050505\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16050505","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Characterization of the Coating Layers Deposited onto Curved Surfaces Using a Novel Multi-Nozzle Extrusion Printer.
Over the past two decades, additive manufacturing has advanced significantly, enabling rapid fabrication of functional components across various applications. In medical devices, it has been used for prototyping, prosthetics, drug delivery platforms, and more recently, tissue scaffolding. However, current technologies face challenges, particularly in depositing conformal layers over curved surfaces. This study introduces a novel multi-nozzle extrusion printer concept designed to deposit soft gel layers onto curved surfaces. A custom clearance locking mechanism enhances the printer's ability to achieve conformal coatings on both flat and curved substrates. We investigate key deposition parameters, including displacement volume and nozzle configuration, while comparing two deposition sequences: "Press and Express" and "Express and Press". Our results demonstrate that the "Express and Press" technique yields more uniform, merged conformal layers than the "Press and Express" method. This technology holds promise for further refinement and potential applications in tissue engineering.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.