一种用于胎儿主动脉三维血流动力学建模的新型产前管道。

IF 2.1 4区 医学 Q2 ACOUSTICS
Joanne Sarsam, Angela Desmond, Mehrdad Roustaei, Gary Satou, Yalda Afshar
{"title":"一种用于胎儿主动脉三维血流动力学建模的新型产前管道。","authors":"Joanne Sarsam, Angela Desmond, Mehrdad Roustaei, Gary Satou, Yalda Afshar","doi":"10.1002/jum.16721","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Congenital heart disease (CHD) is the most common birth defect and the leading cause of infant death from congenital anomalies. Limitations in standard-of-care fetal echocardiography lack hemodynamic insight. Cardiovascular computational modeling methods have been developed to simulate patient-specific morphology and hemodynamics, but are limited in applications for fetal diagnosis, as existing pipelines depend upon 3D CMR imaging data. There is no existing workflow for converting 2D echocardiograms into models of the fetal aorta. We aim to develop a methodology to create pulsatile 3D-aortic models from standard-of-care 2D echocardiograms to supplement fetal imaging with noninvasive predictions of hemodynamics in CHD diagnosis.</p><p><strong>Methods: </strong>Utilizing 2D fetal echocardiograms, edge detection algorithms are applied to delineate vessel boundaries. Cross-sectional diameters along the aortic arch and branch centerlines were segmented, integrated into 3D geometric models, and reconstructed using SimVascular. Patient-specific simulations were developed for three false-positive coarctation of the aorta (CoA) fetuses and 3 true positive CoA fetuses (postnatally confirmed), using echocardiogram and Doppler source data.</p><p><strong>Results: </strong>We propose a modeling methodology and set of boundary conditions that generate physiologically reasonable and cross-validated quantifications of fetal hemodynamics. Noninvasive predictions of fetal aortic pressures, flow streamlines, and vessel displacement offer insight into real-time hemodynamics and the stress of abnormal morphology on flow directions in the prenatal aorta.</p><p><strong>Conclusions: </strong>We present a clinically useful pipeline for generating simulations of flow in the fetal aorta that capture fluid-structure interactions and generate noninvasive predictions of diagnostic hemodynamic indicators that could not previously be captured prenatally. This pipeline integrates into clinical diagnosis and offers insight into patient-specific physiology beyond a visualization of cardiac morphology alone, offering the potential to enhance the diagnostic precision of CHDs.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Prenatal Pipeline for Three-Dimensional Hemodynamic Modeling of the Fetal Aorta.\",\"authors\":\"Joanne Sarsam, Angela Desmond, Mehrdad Roustaei, Gary Satou, Yalda Afshar\",\"doi\":\"10.1002/jum.16721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Congenital heart disease (CHD) is the most common birth defect and the leading cause of infant death from congenital anomalies. Limitations in standard-of-care fetal echocardiography lack hemodynamic insight. Cardiovascular computational modeling methods have been developed to simulate patient-specific morphology and hemodynamics, but are limited in applications for fetal diagnosis, as existing pipelines depend upon 3D CMR imaging data. There is no existing workflow for converting 2D echocardiograms into models of the fetal aorta. We aim to develop a methodology to create pulsatile 3D-aortic models from standard-of-care 2D echocardiograms to supplement fetal imaging with noninvasive predictions of hemodynamics in CHD diagnosis.</p><p><strong>Methods: </strong>Utilizing 2D fetal echocardiograms, edge detection algorithms are applied to delineate vessel boundaries. Cross-sectional diameters along the aortic arch and branch centerlines were segmented, integrated into 3D geometric models, and reconstructed using SimVascular. Patient-specific simulations were developed for three false-positive coarctation of the aorta (CoA) fetuses and 3 true positive CoA fetuses (postnatally confirmed), using echocardiogram and Doppler source data.</p><p><strong>Results: </strong>We propose a modeling methodology and set of boundary conditions that generate physiologically reasonable and cross-validated quantifications of fetal hemodynamics. Noninvasive predictions of fetal aortic pressures, flow streamlines, and vessel displacement offer insight into real-time hemodynamics and the stress of abnormal morphology on flow directions in the prenatal aorta.</p><p><strong>Conclusions: </strong>We present a clinically useful pipeline for generating simulations of flow in the fetal aorta that capture fluid-structure interactions and generate noninvasive predictions of diagnostic hemodynamic indicators that could not previously be captured prenatally. This pipeline integrates into clinical diagnosis and offers insight into patient-specific physiology beyond a visualization of cardiac morphology alone, offering the potential to enhance the diagnostic precision of CHDs.</p>\",\"PeriodicalId\":17563,\"journal\":{\"name\":\"Journal of Ultrasound in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ultrasound in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jum.16721\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.16721","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:先天性心脏病(CHD)是最常见的出生缺陷,也是婴儿先天性异常死亡的主要原因。标准胎儿超声心动图的局限性在于缺乏对血流动力学的了解。心血管计算建模方法已经发展到模拟患者特异性形态和血流动力学,但在胎儿诊断中的应用受到限制,因为现有的管道依赖于3D CMR成像数据。目前还没有将二维超声心动图转换为胎儿主动脉模型的工作流程。我们的目标是开发一种方法,从标准的二维超声心动图中创建脉动的3d主动脉模型,以补充胎儿成像与冠心病诊断中的无创血流动力学预测。方法:利用二维胎儿超声心动图,应用边缘检测算法划定血管边界。沿着主动脉弓和分支中心线的横截面直径进行分割,整合成三维几何模型,并使用SimVascular进行重建。利用超声心动图和多普勒源数据,对3例主动脉缩窄假阳性胎儿和3例CoA真阳性胎儿(产后确诊)进行了患者特异性模拟。结果:我们提出了一种建模方法和一组边界条件,产生生理上合理和交叉验证的胎儿血流动力学定量。胎儿主动脉压力、血流流线和血管位移的无创预测提供了对实时血流动力学和产前主动脉流动方向异常形态压力的深入了解。结论:我们提出了一种临床有用的管道,用于模拟胎儿主动脉的血流,捕捉流体-结构相互作用,并产生诊断性血流动力学指标的无创预测,这些指标在产前无法捕获。该管道整合到临床诊断中,并提供了对患者特异性生理的深入了解,而不仅仅是心脏形态学的可视化,从而有可能提高冠心病的诊断精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Prenatal Pipeline for Three-Dimensional Hemodynamic Modeling of the Fetal Aorta.

Objective: Congenital heart disease (CHD) is the most common birth defect and the leading cause of infant death from congenital anomalies. Limitations in standard-of-care fetal echocardiography lack hemodynamic insight. Cardiovascular computational modeling methods have been developed to simulate patient-specific morphology and hemodynamics, but are limited in applications for fetal diagnosis, as existing pipelines depend upon 3D CMR imaging data. There is no existing workflow for converting 2D echocardiograms into models of the fetal aorta. We aim to develop a methodology to create pulsatile 3D-aortic models from standard-of-care 2D echocardiograms to supplement fetal imaging with noninvasive predictions of hemodynamics in CHD diagnosis.

Methods: Utilizing 2D fetal echocardiograms, edge detection algorithms are applied to delineate vessel boundaries. Cross-sectional diameters along the aortic arch and branch centerlines were segmented, integrated into 3D geometric models, and reconstructed using SimVascular. Patient-specific simulations were developed for three false-positive coarctation of the aorta (CoA) fetuses and 3 true positive CoA fetuses (postnatally confirmed), using echocardiogram and Doppler source data.

Results: We propose a modeling methodology and set of boundary conditions that generate physiologically reasonable and cross-validated quantifications of fetal hemodynamics. Noninvasive predictions of fetal aortic pressures, flow streamlines, and vessel displacement offer insight into real-time hemodynamics and the stress of abnormal morphology on flow directions in the prenatal aorta.

Conclusions: We present a clinically useful pipeline for generating simulations of flow in the fetal aorta that capture fluid-structure interactions and generate noninvasive predictions of diagnostic hemodynamic indicators that could not previously be captured prenatally. This pipeline integrates into clinical diagnosis and offers insight into patient-specific physiology beyond a visualization of cardiac morphology alone, offering the potential to enhance the diagnostic precision of CHDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
4.30%
发文量
205
审稿时长
1.5 months
期刊介绍: The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community. Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to: -Basic Science- Breast Ultrasound- Contrast-Enhanced Ultrasound- Dermatology- Echocardiography- Elastography- Emergency Medicine- Fetal Echocardiography- Gastrointestinal Ultrasound- General and Abdominal Ultrasound- Genitourinary Ultrasound- Gynecologic Ultrasound- Head and Neck Ultrasound- High Frequency Clinical and Preclinical Imaging- Interventional-Intraoperative Ultrasound- Musculoskeletal Ultrasound- Neurosonology- Obstetric Ultrasound- Ophthalmologic Ultrasound- Pediatric Ultrasound- Point-of-Care Ultrasound- Public Policy- Superficial Structures- Therapeutic Ultrasound- Ultrasound Education- Ultrasound in Global Health- Urologic Ultrasound- Vascular Ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信