Junyan Wang, Haowen Zhuang, Chun Li, Ruiqi Cai, Hongshuo Shi, Boxian Pang, Zhijiang Guo, Sang-Bing Ong, Yifeng Nie, Yingzhen Du, Hao Zhou, Xing Chang
{"title":"川芎嗪纳米给药系统通过压电型机械敏感离子通道组分1-禁止素2介导的线粒体质量监测改善阿霉素介导的心肌损伤。","authors":"Junyan Wang, Haowen Zhuang, Chun Li, Ruiqi Cai, Hongshuo Shi, Boxian Pang, Zhijiang Guo, Sang-Bing Ong, Yifeng Nie, Yingzhen Du, Hao Zhou, Xing Chang","doi":"10.1186/s12951-025-03420-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Doxorubicin (DOX) demonstrates significant therapeutic and anticancer efficacy. Nevertheless, it demonstrates significant cardiotoxicity, resulting in permanent cardiac damage. Ligustrazine (LIG) is a bioactive alkaloid derived from the rhizome of the medicinal plant Ligusticum chuanxiong Hort. The alkaloid has exhibited cardioprotective properties. The therapeutic application of LIG is constrained by inadequate water solubility, fast breakdown, and low bioavailability. Nanoparticle drug delivery technologies effectively address these constraints by encapsulating LIG into nanocarriers, significantly enhancing its solubility and bioavailability, hence maximizing its therapeutic efficacy. Consequently, this study employed tetrahedral backbone nucleic acid molecules as LIG carriers. Furthermore, animal models and single-cell sequencing analyses were employed to forecast the mechanisms and targets of pertinent studies. A mouse model genetically modified for the piezo type mechanosensitive ion channel component 1 (PIEZO1), transmembrane BAX inhibitor motif containing 6 (TMBIM6), and prohibitin 2 (PHB2), along with an in vivo and in vitro model of DOX-induced cardiomyopathy (DIC), was established, and a gene-modified cellular system comprising upstream genes and downstream effector targets was constructed. The mechanism of LIG was validated by molecular biology and integrated pharmacology with the implementation of the LIG nano-drug loading method.</p><p><strong>Results: </strong>LIG nano-delivery enhanced DOX-induced cardiac dysfunction and mitochondrial impairment by modulating the PHB2Ser91/Ser176 phosphorylation axis through PIEZO1-TMBIM6, and significantly suppressed cardiomyocyte pyroptosis resulting from mitochondrial homeostasis dysregulation. The findings indicate that LIG nano-delivery is a promising therapeutic approach for addressing DIC.</p><p><strong>Conclusion: </strong>The PHB2Ser91/Ser176 phosphorylation axis regulated by PIEZO1-TMBIM6 is an important target for LIG nano-drug delivery systems to improve mitochondrial damage in DIC.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"383"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117932/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ligustrazine nano-drug delivery system ameliorates doxorubicin-mediated myocardial injury via piezo-type mechanosensitive ion channel component 1-prohibitin 2-mediated mitochondrial quality surveillance.\",\"authors\":\"Junyan Wang, Haowen Zhuang, Chun Li, Ruiqi Cai, Hongshuo Shi, Boxian Pang, Zhijiang Guo, Sang-Bing Ong, Yifeng Nie, Yingzhen Du, Hao Zhou, Xing Chang\",\"doi\":\"10.1186/s12951-025-03420-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Doxorubicin (DOX) demonstrates significant therapeutic and anticancer efficacy. Nevertheless, it demonstrates significant cardiotoxicity, resulting in permanent cardiac damage. Ligustrazine (LIG) is a bioactive alkaloid derived from the rhizome of the medicinal plant Ligusticum chuanxiong Hort. The alkaloid has exhibited cardioprotective properties. The therapeutic application of LIG is constrained by inadequate water solubility, fast breakdown, and low bioavailability. Nanoparticle drug delivery technologies effectively address these constraints by encapsulating LIG into nanocarriers, significantly enhancing its solubility and bioavailability, hence maximizing its therapeutic efficacy. Consequently, this study employed tetrahedral backbone nucleic acid molecules as LIG carriers. Furthermore, animal models and single-cell sequencing analyses were employed to forecast the mechanisms and targets of pertinent studies. A mouse model genetically modified for the piezo type mechanosensitive ion channel component 1 (PIEZO1), transmembrane BAX inhibitor motif containing 6 (TMBIM6), and prohibitin 2 (PHB2), along with an in vivo and in vitro model of DOX-induced cardiomyopathy (DIC), was established, and a gene-modified cellular system comprising upstream genes and downstream effector targets was constructed. The mechanism of LIG was validated by molecular biology and integrated pharmacology with the implementation of the LIG nano-drug loading method.</p><p><strong>Results: </strong>LIG nano-delivery enhanced DOX-induced cardiac dysfunction and mitochondrial impairment by modulating the PHB2Ser91/Ser176 phosphorylation axis through PIEZO1-TMBIM6, and significantly suppressed cardiomyocyte pyroptosis resulting from mitochondrial homeostasis dysregulation. The findings indicate that LIG nano-delivery is a promising therapeutic approach for addressing DIC.</p><p><strong>Conclusion: </strong>The PHB2Ser91/Ser176 phosphorylation axis regulated by PIEZO1-TMBIM6 is an important target for LIG nano-drug delivery systems to improve mitochondrial damage in DIC.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"383\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03420-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03420-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Ligustrazine nano-drug delivery system ameliorates doxorubicin-mediated myocardial injury via piezo-type mechanosensitive ion channel component 1-prohibitin 2-mediated mitochondrial quality surveillance.
Background: Doxorubicin (DOX) demonstrates significant therapeutic and anticancer efficacy. Nevertheless, it demonstrates significant cardiotoxicity, resulting in permanent cardiac damage. Ligustrazine (LIG) is a bioactive alkaloid derived from the rhizome of the medicinal plant Ligusticum chuanxiong Hort. The alkaloid has exhibited cardioprotective properties. The therapeutic application of LIG is constrained by inadequate water solubility, fast breakdown, and low bioavailability. Nanoparticle drug delivery technologies effectively address these constraints by encapsulating LIG into nanocarriers, significantly enhancing its solubility and bioavailability, hence maximizing its therapeutic efficacy. Consequently, this study employed tetrahedral backbone nucleic acid molecules as LIG carriers. Furthermore, animal models and single-cell sequencing analyses were employed to forecast the mechanisms and targets of pertinent studies. A mouse model genetically modified for the piezo type mechanosensitive ion channel component 1 (PIEZO1), transmembrane BAX inhibitor motif containing 6 (TMBIM6), and prohibitin 2 (PHB2), along with an in vivo and in vitro model of DOX-induced cardiomyopathy (DIC), was established, and a gene-modified cellular system comprising upstream genes and downstream effector targets was constructed. The mechanism of LIG was validated by molecular biology and integrated pharmacology with the implementation of the LIG nano-drug loading method.
Results: LIG nano-delivery enhanced DOX-induced cardiac dysfunction and mitochondrial impairment by modulating the PHB2Ser91/Ser176 phosphorylation axis through PIEZO1-TMBIM6, and significantly suppressed cardiomyocyte pyroptosis resulting from mitochondrial homeostasis dysregulation. The findings indicate that LIG nano-delivery is a promising therapeutic approach for addressing DIC.
Conclusion: The PHB2Ser91/Ser176 phosphorylation axis regulated by PIEZO1-TMBIM6 is an important target for LIG nano-drug delivery systems to improve mitochondrial damage in DIC.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.