Ahmed Kabil, Natalia Nayyar, Chengxi Xu, Julyanne Brassard, Lesley A Hill, Samuel B Shin, Sameeksha Chopra, Bernard Lo, Yicong Li, Mya Bal, Marine Theret, Fabio M V Rossi, T Michael Underhill, Michael R Hughes, Kelly M McNagny
{"title":"ILC2s和ILC3s的功能靶向揭示了在肠道纤维化和体内平衡中的选择性作用。","authors":"Ahmed Kabil, Natalia Nayyar, Chengxi Xu, Julyanne Brassard, Lesley A Hill, Samuel B Shin, Sameeksha Chopra, Bernard Lo, Yicong Li, Mya Bal, Marine Theret, Fabio M V Rossi, T Michael Underhill, Michael R Hughes, Kelly M McNagny","doi":"10.1084/jem.20241671","DOIUrl":null,"url":null,"abstract":"<p><p>Innate lymphoid cells (ILCs) are long-lived, tissue-resident cell analogs to T helper subsets that lack antigen-specific receptors. Understanding the roles of specific ILCs in chronic inflammation and fibrosis has been limited by inadequate tools for selective targeting. Here, we used Il17rb-CreERT2-eGFP and Rorc-Cre strains to selectively delete RORα in ILC2s and ILC3/Th17 cells, respectively. RORα deletion in ILC2s caused significant loss of gastrointestinal ILC2s, increased ILC3 abundance, elevated Th17-type responses, and heightened susceptibility to Crohn's disease-like fibrosis. Conversely, RORα deletion in ILC3/Th17 cells reduced IL-17 production, protecting against fibrosis. Using isolithocholic acid (isoLCA), a microbial secondary bile acid and RORγt inverse agonist, we confirmed the role of ILC3s/Th17 cells in fibrosis. In RORγt reporter and Th17-deficient Rag1-/- mice, isoLCA reduced IL-17 production by ILC3s and attenuated intestinal fibrosis by dampening RORγt-dependent ILC3/Th17 responses. These findings reveal a novel interplay between ILC2s and ILC3s in gut homeostasis and demonstrate the therapeutic potential of targeting RORγt in ILC3s as a strategy for preventing fibrosis.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 7","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional targeting of ILC2s and ILC3s reveals selective roles in intestinal fibrosis and homeostasis.\",\"authors\":\"Ahmed Kabil, Natalia Nayyar, Chengxi Xu, Julyanne Brassard, Lesley A Hill, Samuel B Shin, Sameeksha Chopra, Bernard Lo, Yicong Li, Mya Bal, Marine Theret, Fabio M V Rossi, T Michael Underhill, Michael R Hughes, Kelly M McNagny\",\"doi\":\"10.1084/jem.20241671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innate lymphoid cells (ILCs) are long-lived, tissue-resident cell analogs to T helper subsets that lack antigen-specific receptors. Understanding the roles of specific ILCs in chronic inflammation and fibrosis has been limited by inadequate tools for selective targeting. Here, we used Il17rb-CreERT2-eGFP and Rorc-Cre strains to selectively delete RORα in ILC2s and ILC3/Th17 cells, respectively. RORα deletion in ILC2s caused significant loss of gastrointestinal ILC2s, increased ILC3 abundance, elevated Th17-type responses, and heightened susceptibility to Crohn's disease-like fibrosis. Conversely, RORα deletion in ILC3/Th17 cells reduced IL-17 production, protecting against fibrosis. Using isolithocholic acid (isoLCA), a microbial secondary bile acid and RORγt inverse agonist, we confirmed the role of ILC3s/Th17 cells in fibrosis. In RORγt reporter and Th17-deficient Rag1-/- mice, isoLCA reduced IL-17 production by ILC3s and attenuated intestinal fibrosis by dampening RORγt-dependent ILC3/Th17 responses. These findings reveal a novel interplay between ILC2s and ILC3s in gut homeostasis and demonstrate the therapeutic potential of targeting RORγt in ILC3s as a strategy for preventing fibrosis.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 7\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20241671\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241671","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Functional targeting of ILC2s and ILC3s reveals selective roles in intestinal fibrosis and homeostasis.
Innate lymphoid cells (ILCs) are long-lived, tissue-resident cell analogs to T helper subsets that lack antigen-specific receptors. Understanding the roles of specific ILCs in chronic inflammation and fibrosis has been limited by inadequate tools for selective targeting. Here, we used Il17rb-CreERT2-eGFP and Rorc-Cre strains to selectively delete RORα in ILC2s and ILC3/Th17 cells, respectively. RORα deletion in ILC2s caused significant loss of gastrointestinal ILC2s, increased ILC3 abundance, elevated Th17-type responses, and heightened susceptibility to Crohn's disease-like fibrosis. Conversely, RORα deletion in ILC3/Th17 cells reduced IL-17 production, protecting against fibrosis. Using isolithocholic acid (isoLCA), a microbial secondary bile acid and RORγt inverse agonist, we confirmed the role of ILC3s/Th17 cells in fibrosis. In RORγt reporter and Th17-deficient Rag1-/- mice, isoLCA reduced IL-17 production by ILC3s and attenuated intestinal fibrosis by dampening RORγt-dependent ILC3/Th17 responses. These findings reveal a novel interplay between ILC2s and ILC3s in gut homeostasis and demonstrate the therapeutic potential of targeting RORγt in ILC3s as a strategy for preventing fibrosis.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.