Anna-Maria Gaber, Maria Tsakiri, Hector Katifelis, Maria Gazouli, Costas Demetzos
{"title":"HSPC和HSPC:DMPC负载豆甾醇脂质体的制备、理化评价及体外毒性研究。","authors":"Anna-Maria Gaber, Maria Tsakiri, Hector Katifelis, Maria Gazouli, Costas Demetzos","doi":"10.1080/08982104.2025.2502928","DOIUrl":null,"url":null,"abstract":"<p><p>Phytosterols, like stigmasterol, have been studied for their antioxidant, immunomodulatory, and anticancer properties. However, their lipophilic nature and biological instability make it challenging to incorporate them in food supplements and medicinal products. Liposomes offer many benefits in sterols' entrapment and delivery them due to their high bioavailability, low toxicity, and ability to target specific tissues. The purpose of this study was to develop stigmasterol-loaded liposomes using HSPC (Hydrogenated Soy Phosphatidylcholine) and HSPC:DMPC (Dimyristoylphosphatidylcholine). The impact of increasing stigmasterol concentrations on the physicochemical stability of the liposomal formulations was analyzed by dynamic light scattering. The results showed that HSPC-based liposomes could incorporate higher amounts of stigmasterol compared to the HSPC:DMPC-based liposomes. Further analysis through differential scanning calorimetry revealed the formation of metastable phases in HSPC:DMPC:stigmasterol lipid bilayers. Finally, an <i>in vitro</i> MTS assay on HEK-293 cells demonstrated the low toxicity of the stigmasterol-loaded nanoplatforms. In conclusion, stigmasterol, not only contributed to the stability of liposomal formulation but exhibited low cell toxicity on HEK-293 line and could be used as a valuable compound in liposomal drug delivery formulation.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-12"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation, physicochemical evaluation and <i>in vitro</i> toxicity studies of HSPC and HSPC:DMPC stigmasterol-loaded liposomes.\",\"authors\":\"Anna-Maria Gaber, Maria Tsakiri, Hector Katifelis, Maria Gazouli, Costas Demetzos\",\"doi\":\"10.1080/08982104.2025.2502928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytosterols, like stigmasterol, have been studied for their antioxidant, immunomodulatory, and anticancer properties. However, their lipophilic nature and biological instability make it challenging to incorporate them in food supplements and medicinal products. Liposomes offer many benefits in sterols' entrapment and delivery them due to their high bioavailability, low toxicity, and ability to target specific tissues. The purpose of this study was to develop stigmasterol-loaded liposomes using HSPC (Hydrogenated Soy Phosphatidylcholine) and HSPC:DMPC (Dimyristoylphosphatidylcholine). The impact of increasing stigmasterol concentrations on the physicochemical stability of the liposomal formulations was analyzed by dynamic light scattering. The results showed that HSPC-based liposomes could incorporate higher amounts of stigmasterol compared to the HSPC:DMPC-based liposomes. Further analysis through differential scanning calorimetry revealed the formation of metastable phases in HSPC:DMPC:stigmasterol lipid bilayers. Finally, an <i>in vitro</i> MTS assay on HEK-293 cells demonstrated the low toxicity of the stigmasterol-loaded nanoplatforms. In conclusion, stigmasterol, not only contributed to the stability of liposomal formulation but exhibited low cell toxicity on HEK-293 line and could be used as a valuable compound in liposomal drug delivery formulation.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2025.2502928\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2025.2502928","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Preparation, physicochemical evaluation and in vitro toxicity studies of HSPC and HSPC:DMPC stigmasterol-loaded liposomes.
Phytosterols, like stigmasterol, have been studied for their antioxidant, immunomodulatory, and anticancer properties. However, their lipophilic nature and biological instability make it challenging to incorporate them in food supplements and medicinal products. Liposomes offer many benefits in sterols' entrapment and delivery them due to their high bioavailability, low toxicity, and ability to target specific tissues. The purpose of this study was to develop stigmasterol-loaded liposomes using HSPC (Hydrogenated Soy Phosphatidylcholine) and HSPC:DMPC (Dimyristoylphosphatidylcholine). The impact of increasing stigmasterol concentrations on the physicochemical stability of the liposomal formulations was analyzed by dynamic light scattering. The results showed that HSPC-based liposomes could incorporate higher amounts of stigmasterol compared to the HSPC:DMPC-based liposomes. Further analysis through differential scanning calorimetry revealed the formation of metastable phases in HSPC:DMPC:stigmasterol lipid bilayers. Finally, an in vitro MTS assay on HEK-293 cells demonstrated the low toxicity of the stigmasterol-loaded nanoplatforms. In conclusion, stigmasterol, not only contributed to the stability of liposomal formulation but exhibited low cell toxicity on HEK-293 line and could be used as a valuable compound in liposomal drug delivery formulation.
期刊介绍:
The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society.
The scope of the Journal includes:
Formulation and characterisation of systems
Formulation engineering of systems
Synthetic and physical lipid chemistry
Lipid Biology
Biomembranes
Vaccines
Emerging technologies and systems related to liposomes and vesicle type systems
Developmental methodologies and new analytical techniques pertaining to the general area
Pharmacokinetics, pharmacodynamics and biodistribution of systems
Clinical applications.
The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.