鲍曼不动杆菌中的AbOmpA:探索外膜整合和外膜囊泡相关的AbOmpA的毒力机制,并开发针对AbOmpA的抗感染药物。

IF 9 2区 医学 Q1 CELL BIOLOGY
Man Hwan Oh, Md Minarul Islam, Nayeong Kim, Chul Hee Choi, Minsang Shin, Woo Shik Shin, Je Chul Lee
{"title":"鲍曼不动杆菌中的AbOmpA:探索外膜整合和外膜囊泡相关的AbOmpA的毒力机制,并开发针对AbOmpA的抗感染药物。","authors":"Man Hwan Oh, Md Minarul Islam, Nayeong Kim, Chul Hee Choi, Minsang Shin, Woo Shik Shin, Je Chul Lee","doi":"10.1186/s12929-025-01147-5","DOIUrl":null,"url":null,"abstract":"<p><p>Acinetobacter baumannii is notorious for its antimicrobial resistance and its potential to cause epidemics in hospital settings, which pose a global health threat. Although this microorganism is traditionally considered a low-virulence pathogen, extensive research has been conducted on its virulence and pathogenesis in recent years. Advances in understanding the virulence mechanisms of A. baumannii have prompted a shift in the development of anti-infective agents. The outer membrane protein A (AbOmpA) of A. baumannii is a key virulence factor both in vitro and in vivo. AbOmpA exists in three forms: outer membrane-integrated AbOmpA, outer membrane vesicle (OMV)-associated AbOmpA, and free proteins. Given that outer membrane-integrated AbOmpA has been implicated in the virulence and antimicrobial resistance of A. baumannii, many studies have focused on outer membrane-integrated AbOmpA as a therapeutic target for combating drug-resistant A. baumannii, and have led to the discovery of small molecules, polypeptides, and antimicrobial peptides targeting AbOmpA. However, the pathophysiological role of OMV-associated AbOmpA and its impact on AbOmpA-targeting agents remain unclear. This review summarizes the current knowledge of AbOmpA and critically discusses OMV-associated AbOmpA in relation to virulence and its potential impact on AbOmpA-targeted therapies to provide a better understanding of AbOmpA for the development of novel therapeutics against A. baumannii.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"53"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108004/pdf/","citationCount":"0","resultStr":"{\"title\":\"AbOmpA in Acinetobacter baumannii: exploring virulence mechanisms of outer membrane-integrated and outer membrane vesicle-associated AbOmpA and developing anti-infective agents targeting AbOmpA.\",\"authors\":\"Man Hwan Oh, Md Minarul Islam, Nayeong Kim, Chul Hee Choi, Minsang Shin, Woo Shik Shin, Je Chul Lee\",\"doi\":\"10.1186/s12929-025-01147-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acinetobacter baumannii is notorious for its antimicrobial resistance and its potential to cause epidemics in hospital settings, which pose a global health threat. Although this microorganism is traditionally considered a low-virulence pathogen, extensive research has been conducted on its virulence and pathogenesis in recent years. Advances in understanding the virulence mechanisms of A. baumannii have prompted a shift in the development of anti-infective agents. The outer membrane protein A (AbOmpA) of A. baumannii is a key virulence factor both in vitro and in vivo. AbOmpA exists in three forms: outer membrane-integrated AbOmpA, outer membrane vesicle (OMV)-associated AbOmpA, and free proteins. Given that outer membrane-integrated AbOmpA has been implicated in the virulence and antimicrobial resistance of A. baumannii, many studies have focused on outer membrane-integrated AbOmpA as a therapeutic target for combating drug-resistant A. baumannii, and have led to the discovery of small molecules, polypeptides, and antimicrobial peptides targeting AbOmpA. However, the pathophysiological role of OMV-associated AbOmpA and its impact on AbOmpA-targeting agents remain unclear. This review summarizes the current knowledge of AbOmpA and critically discusses OMV-associated AbOmpA in relation to virulence and its potential impact on AbOmpA-targeted therapies to provide a better understanding of AbOmpA for the development of novel therapeutics against A. baumannii.</p>\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":\"32 1\",\"pages\":\"53\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-025-01147-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-025-01147-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鲍曼不动杆菌因其抗微生物药物耐药性和在医院环境中引起流行病的潜力而臭名昭著,这对全球健康构成威胁。虽然这种微生物传统上被认为是一种低毒力的病原体,但近年来对其毒力和发病机制进行了广泛的研究。在了解鲍曼不动杆菌的毒力机制的进展促使了抗感染药物的发展转变。鲍曼不动杆菌的外膜蛋白A (AbOmpA)在体内和体外都是一个重要的毒力因子。皱褶蛋白以三种形式存在:外膜整合皱褶蛋白、外膜囊泡(OMV)相关皱褶蛋白和游离蛋白。鉴于外膜整合的AbOmpA与鲍曼不动杆菌的毒力和耐药性有关,许多研究将外膜整合的AbOmpA作为对抗耐药鲍曼不动杆菌的治疗靶点,并发现了靶向AbOmpA的小分子、多肽和抗菌肽。然而,omv相关的AbOmpA的病理生理作用及其对AbOmpA靶向药物的影响尚不清楚。这篇综述总结了目前对AbOmpA的认识,并批判性地讨论了omv相关的AbOmpA与毒力的关系及其对AbOmpA靶向治疗的潜在影响,以更好地了解AbOmpA,为开发针对鲍曼假单胞杆菌的新疗法提供帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AbOmpA in Acinetobacter baumannii: exploring virulence mechanisms of outer membrane-integrated and outer membrane vesicle-associated AbOmpA and developing anti-infective agents targeting AbOmpA.

Acinetobacter baumannii is notorious for its antimicrobial resistance and its potential to cause epidemics in hospital settings, which pose a global health threat. Although this microorganism is traditionally considered a low-virulence pathogen, extensive research has been conducted on its virulence and pathogenesis in recent years. Advances in understanding the virulence mechanisms of A. baumannii have prompted a shift in the development of anti-infective agents. The outer membrane protein A (AbOmpA) of A. baumannii is a key virulence factor both in vitro and in vivo. AbOmpA exists in three forms: outer membrane-integrated AbOmpA, outer membrane vesicle (OMV)-associated AbOmpA, and free proteins. Given that outer membrane-integrated AbOmpA has been implicated in the virulence and antimicrobial resistance of A. baumannii, many studies have focused on outer membrane-integrated AbOmpA as a therapeutic target for combating drug-resistant A. baumannii, and have led to the discovery of small molecules, polypeptides, and antimicrobial peptides targeting AbOmpA. However, the pathophysiological role of OMV-associated AbOmpA and its impact on AbOmpA-targeting agents remain unclear. This review summarizes the current knowledge of AbOmpA and critically discusses OMV-associated AbOmpA in relation to virulence and its potential impact on AbOmpA-targeted therapies to provide a better understanding of AbOmpA for the development of novel therapeutics against A. baumannii.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信