Maryam Koleini, Ahmad Mosadegh, Farzan Madadizadeh, Hamid Heidari
{"title":"临床分离肠球菌感染严重程度和高耐药性因素的评估。","authors":"Maryam Koleini, Ahmad Mosadegh, Farzan Madadizadeh, Hamid Heidari","doi":"10.1002/jcla.70063","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Various factors, including virulence determinants, biofilm formation, and antimicrobial resistance, contribute to the severity of infections caused by Enterococcus spp.</p><p><strong>Methods: </strong>Enterococcus isolates were obtained from hospitalized patients in Yazd, Iran, and identified using microbiological and molecular tests. High-level resistance, biofilm formation, and the genes encoding virulence factors and resistance were investigated following standard methods.</p><p><strong>Results: </strong>Enterococcus faecalis was the most prevalent species (60.7%), followed by Enterococcus faecium (30.4%). Linezolid was highly effective, with 94.6% of isolates being susceptible. However, more than 76% of isolates exhibited resistance to rifampin, erythromycin, tetracycline, and ciprofloxacin, and 94.6% were multidrug-resistant (MDR). Additionally, 39.3% of the isolates were vancomycin-resistant enterococci (VRE) with a MIC > 32 μg/mL, and the vanA gene was detected in 35.7% of the isolates. High-level resistance to gentamicin and streptomycin was seen in 60.7% and 50% of the isolates, respectively. The most prevalent aminoglycoside resistance gene was aph(3')-IIIa (62.5%) followed by ant(6')-Ia (58.9%), and aac(6')-Ie-aph(2″)-Ia (50%). The ant(3″)-Ia was found in only one isolate. Most of the isolates (87.5%) were biofilm producers, and the distribution of virulence-encoding genes was as follows: gelE (66.1%), efaA (57.1%), asa1 (51.8%), esp (25%), cylA (19.6%), and hyl (8.9%). Furthermore, the ace gene was present in 79.4% of E. faecalis isolates, while the fnm and acm genes were found in 76.5% and 23.5% of E. faecium isolates, respectively.</p><p><strong>Conclusion: </strong>The study highlights the significant role of notable drug resistance and the widespread presence of virulence traits in the development of enterococcal infections.</p>","PeriodicalId":15509,"journal":{"name":"Journal of Clinical Laboratory Analysis","volume":" ","pages":"e70063"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Factors Contributing to Infection Severity and High Levels of Drug Resistance in Clinical Enterococcus Isolates.\",\"authors\":\"Maryam Koleini, Ahmad Mosadegh, Farzan Madadizadeh, Hamid Heidari\",\"doi\":\"10.1002/jcla.70063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Various factors, including virulence determinants, biofilm formation, and antimicrobial resistance, contribute to the severity of infections caused by Enterococcus spp.</p><p><strong>Methods: </strong>Enterococcus isolates were obtained from hospitalized patients in Yazd, Iran, and identified using microbiological and molecular tests. High-level resistance, biofilm formation, and the genes encoding virulence factors and resistance were investigated following standard methods.</p><p><strong>Results: </strong>Enterococcus faecalis was the most prevalent species (60.7%), followed by Enterococcus faecium (30.4%). Linezolid was highly effective, with 94.6% of isolates being susceptible. However, more than 76% of isolates exhibited resistance to rifampin, erythromycin, tetracycline, and ciprofloxacin, and 94.6% were multidrug-resistant (MDR). Additionally, 39.3% of the isolates were vancomycin-resistant enterococci (VRE) with a MIC > 32 μg/mL, and the vanA gene was detected in 35.7% of the isolates. High-level resistance to gentamicin and streptomycin was seen in 60.7% and 50% of the isolates, respectively. The most prevalent aminoglycoside resistance gene was aph(3')-IIIa (62.5%) followed by ant(6')-Ia (58.9%), and aac(6')-Ie-aph(2″)-Ia (50%). The ant(3″)-Ia was found in only one isolate. Most of the isolates (87.5%) were biofilm producers, and the distribution of virulence-encoding genes was as follows: gelE (66.1%), efaA (57.1%), asa1 (51.8%), esp (25%), cylA (19.6%), and hyl (8.9%). Furthermore, the ace gene was present in 79.4% of E. faecalis isolates, while the fnm and acm genes were found in 76.5% and 23.5% of E. faecium isolates, respectively.</p><p><strong>Conclusion: </strong>The study highlights the significant role of notable drug resistance and the widespread presence of virulence traits in the development of enterococcal infections.</p>\",\"PeriodicalId\":15509,\"journal\":{\"name\":\"Journal of Clinical Laboratory Analysis\",\"volume\":\" \",\"pages\":\"e70063\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Laboratory Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jcla.70063\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Laboratory Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcla.70063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Assessment of Factors Contributing to Infection Severity and High Levels of Drug Resistance in Clinical Enterococcus Isolates.
Background: Various factors, including virulence determinants, biofilm formation, and antimicrobial resistance, contribute to the severity of infections caused by Enterococcus spp.
Methods: Enterococcus isolates were obtained from hospitalized patients in Yazd, Iran, and identified using microbiological and molecular tests. High-level resistance, biofilm formation, and the genes encoding virulence factors and resistance were investigated following standard methods.
Results: Enterococcus faecalis was the most prevalent species (60.7%), followed by Enterococcus faecium (30.4%). Linezolid was highly effective, with 94.6% of isolates being susceptible. However, more than 76% of isolates exhibited resistance to rifampin, erythromycin, tetracycline, and ciprofloxacin, and 94.6% were multidrug-resistant (MDR). Additionally, 39.3% of the isolates were vancomycin-resistant enterococci (VRE) with a MIC > 32 μg/mL, and the vanA gene was detected in 35.7% of the isolates. High-level resistance to gentamicin and streptomycin was seen in 60.7% and 50% of the isolates, respectively. The most prevalent aminoglycoside resistance gene was aph(3')-IIIa (62.5%) followed by ant(6')-Ia (58.9%), and aac(6')-Ie-aph(2″)-Ia (50%). The ant(3″)-Ia was found in only one isolate. Most of the isolates (87.5%) were biofilm producers, and the distribution of virulence-encoding genes was as follows: gelE (66.1%), efaA (57.1%), asa1 (51.8%), esp (25%), cylA (19.6%), and hyl (8.9%). Furthermore, the ace gene was present in 79.4% of E. faecalis isolates, while the fnm and acm genes were found in 76.5% and 23.5% of E. faecium isolates, respectively.
Conclusion: The study highlights the significant role of notable drug resistance and the widespread presence of virulence traits in the development of enterococcal infections.
期刊介绍:
Journal of Clinical Laboratory Analysis publishes original articles on newly developing modes of technology and laboratory assays, with emphasis on their application in current and future clinical laboratory testing. This includes reports from the following fields: immunochemistry and toxicology, hematology and hematopathology, immunopathology, molecular diagnostics, microbiology, genetic testing, immunohematology, and clinical chemistry.