Katja Wittenzellner, Manuel Lengl, Stefan Röhrl, Carlo Maurer, Christian Klenk, Aristeidis Papargyriou, Laura Schmidleitner, Nicole Kabella, Akul Shastri, David E Fresacher, Farid Harb, Nawal Hafez, Stefanie Bärthel, Daniele Lucarelli, Carmen Escorial-Iriarte, Felix Orben, Rupert Öllinger, Ellen Emken, Lisa Fricke, Joanna Madej, Patrick Wustrow, I Ekin Demir, Helmut Friess, Tobias Lahmer, Roland M Schmid, Roland Rad, Günter Schneider, Bernhard Kuster, Dieter Saur, Oliver Hayden, Klaus Diepold, Maximilian Reichert
{"title":"无标记单细胞表型实时确定胰腺癌肿瘤细胞异质性。","authors":"Katja Wittenzellner, Manuel Lengl, Stefan Röhrl, Carlo Maurer, Christian Klenk, Aristeidis Papargyriou, Laura Schmidleitner, Nicole Kabella, Akul Shastri, David E Fresacher, Farid Harb, Nawal Hafez, Stefanie Bärthel, Daniele Lucarelli, Carmen Escorial-Iriarte, Felix Orben, Rupert Öllinger, Ellen Emken, Lisa Fricke, Joanna Madej, Patrick Wustrow, I Ekin Demir, Helmut Friess, Tobias Lahmer, Roland M Schmid, Roland Rad, Günter Schneider, Bernhard Kuster, Dieter Saur, Oliver Hayden, Klaus Diepold, Maximilian Reichert","doi":"10.1172/jci.insight.169105","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to chemotherapy of pancreatic ductal adenocarcinoma (PDAC) is largely driven by intratumoral heterogeneity (ITH) due to tumor cell plasticity and clonal diversity. In order to develop novel strategies to overcome this defined mechanism of resistance, tools to monitor and quantify ITH in a rapid and scalable fashion are needed urgently. Here, we employed label-free digital holographic microscopy (DHM) to characterize ITH in PDAC. We established a robust experimental and machine learning analysis pipeline to perform single cell phenotyping based on DHM-derived phase images of PDAC cells in suspension. Importantly, we are able to detect dynamic changes in tumor cell differentiation and heterogeneity of distinct PDAC subtypes upon induction of epithelial-to-mesenchymal transition and under treatment-imposed pressure in murine and patient-derived model systems. This platform allows us to assess phenotypic ITH in PDAC on a single cell level in real-time. Implementing this technology into the clinical workflow has the potential to fundamentally increase our understanding of tumor heterogeneity during evolution and treatment response.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-free single cell phenotyping to determine tumor cell heterogeneity in pancreatic cancer in real-time.\",\"authors\":\"Katja Wittenzellner, Manuel Lengl, Stefan Röhrl, Carlo Maurer, Christian Klenk, Aristeidis Papargyriou, Laura Schmidleitner, Nicole Kabella, Akul Shastri, David E Fresacher, Farid Harb, Nawal Hafez, Stefanie Bärthel, Daniele Lucarelli, Carmen Escorial-Iriarte, Felix Orben, Rupert Öllinger, Ellen Emken, Lisa Fricke, Joanna Madej, Patrick Wustrow, I Ekin Demir, Helmut Friess, Tobias Lahmer, Roland M Schmid, Roland Rad, Günter Schneider, Bernhard Kuster, Dieter Saur, Oliver Hayden, Klaus Diepold, Maximilian Reichert\",\"doi\":\"10.1172/jci.insight.169105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistance to chemotherapy of pancreatic ductal adenocarcinoma (PDAC) is largely driven by intratumoral heterogeneity (ITH) due to tumor cell plasticity and clonal diversity. In order to develop novel strategies to overcome this defined mechanism of resistance, tools to monitor and quantify ITH in a rapid and scalable fashion are needed urgently. Here, we employed label-free digital holographic microscopy (DHM) to characterize ITH in PDAC. We established a robust experimental and machine learning analysis pipeline to perform single cell phenotyping based on DHM-derived phase images of PDAC cells in suspension. Importantly, we are able to detect dynamic changes in tumor cell differentiation and heterogeneity of distinct PDAC subtypes upon induction of epithelial-to-mesenchymal transition and under treatment-imposed pressure in murine and patient-derived model systems. This platform allows us to assess phenotypic ITH in PDAC on a single cell level in real-time. Implementing this technology into the clinical workflow has the potential to fundamentally increase our understanding of tumor heterogeneity during evolution and treatment response.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.169105\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.169105","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Label-free single cell phenotyping to determine tumor cell heterogeneity in pancreatic cancer in real-time.
Resistance to chemotherapy of pancreatic ductal adenocarcinoma (PDAC) is largely driven by intratumoral heterogeneity (ITH) due to tumor cell plasticity and clonal diversity. In order to develop novel strategies to overcome this defined mechanism of resistance, tools to monitor and quantify ITH in a rapid and scalable fashion are needed urgently. Here, we employed label-free digital holographic microscopy (DHM) to characterize ITH in PDAC. We established a robust experimental and machine learning analysis pipeline to perform single cell phenotyping based on DHM-derived phase images of PDAC cells in suspension. Importantly, we are able to detect dynamic changes in tumor cell differentiation and heterogeneity of distinct PDAC subtypes upon induction of epithelial-to-mesenchymal transition and under treatment-imposed pressure in murine and patient-derived model systems. This platform allows us to assess phenotypic ITH in PDAC on a single cell level in real-time. Implementing this technology into the clinical workflow has the potential to fundamentally increase our understanding of tumor heterogeneity during evolution and treatment response.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.