{"title":"RDW-YOLO:一个可扩展的农业有害生物监测和控制的深度学习框架。","authors":"Jiaxin Song, Ke Cheng, Fei Chen, Xuecheng Hua","doi":"10.3390/insects16050545","DOIUrl":null,"url":null,"abstract":"<p><p>Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO's potential for precise and efficient pest detection in sustainable agriculture.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112463/pdf/","citationCount":"0","resultStr":"{\"title\":\"RDW-YOLO: A Deep Learning Framework for Scalable Agricultural Pest Monitoring and Control.\",\"authors\":\"Jiaxin Song, Ke Cheng, Fei Chen, Xuecheng Hua\",\"doi\":\"10.3390/insects16050545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO's potential for precise and efficient pest detection in sustainable agriculture.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16050545\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16050545","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
RDW-YOLO: A Deep Learning Framework for Scalable Agricultural Pest Monitoring and Control.
Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO's potential for precise and efficient pest detection in sustainable agriculture.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.