RDW-YOLO:一个可扩展的农业有害生物监测和控制的深度学习框架。

IF 2.7 2区 农林科学 Q1 ENTOMOLOGY
Insects Pub Date : 2025-05-21 DOI:10.3390/insects16050545
Jiaxin Song, Ke Cheng, Fei Chen, Xuecheng Hua
{"title":"RDW-YOLO:一个可扩展的农业有害生物监测和控制的深度学习框架。","authors":"Jiaxin Song, Ke Cheng, Fei Chen, Xuecheng Hua","doi":"10.3390/insects16050545","DOIUrl":null,"url":null,"abstract":"<p><p>Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO's potential for precise and efficient pest detection in sustainable agriculture.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112463/pdf/","citationCount":"0","resultStr":"{\"title\":\"RDW-YOLO: A Deep Learning Framework for Scalable Agricultural Pest Monitoring and Control.\",\"authors\":\"Jiaxin Song, Ke Cheng, Fei Chen, Xuecheng Hua\",\"doi\":\"10.3390/insects16050545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO's potential for precise and efficient pest detection in sustainable agriculture.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16050545\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16050545","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于害虫目标的多样性、生命周期的多变性和背景的复杂性,传统的害虫检测方法往往在准确性和效率方面存在问题。本研究引入了基于YOLO11改进的害虫检测算法RDW-YOLO,主要有三个创新点。首先,重新参数化扩展融合块(RDFBlock)通过多分支扩展卷积增强了细粒度害虫特征的特征提取。其次,DualPathDown (DPDown)模块集成了混合池和卷积,具有更好的多尺度适应性。第三,改进的Wise-Wasserstein IoU (WWIoU)损失函数优化了匹配机制,改进了有界盒回归。在增强IP102数据集上的实验表明,RDW-YOLO的准确率mAP@0.5为71.3%,mAP@0.5:0.95为50.0%,分别比YOLO11高3.1%和2.0%。该模型还采用了轻量化设计,计算复杂度为5.6 G,在不牺牲精度的情况下确保了高效部署。这些结果突出了RDW-YOLO在可持续农业中精确和有效检测有害生物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RDW-YOLO: A Deep Learning Framework for Scalable Agricultural Pest Monitoring and Control.

Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO's potential for precise and efficient pest detection in sustainable agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insects
Insects Agricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍: Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信