非诺贝特通过抑制Egr- 1维持脑缺血再灌注损伤时血脑屏障的完整性。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Weifeng Shan, Haiyan Lan, Yini Wu, Qiaomin Xu, Minji You, Jimin Wu
{"title":"非诺贝特通过抑制Egr- 1维持脑缺血再灌注损伤时血脑屏障的完整性。","authors":"Weifeng Shan, Haiyan Lan, Yini Wu, Qiaomin Xu, Minji You, Jimin Wu","doi":"10.1007/s11626-025-01044-z","DOIUrl":null,"url":null,"abstract":"<p><p>Blood-brain barrier (BBB) damage and dysfunction are critical pathological features associated with cerebral ischemia-reperfusion injury in stroke. Fenofibrate, a lipid-regulating drug, has an unclear role in BBB function during stroke. This study investigates the effects of fenofibrate on BBB disruption and cerebrovascular endothelial cells induced by ischemia-reperfusion. Cerebral ischemia-reperfusion injury (CIRI) models were established using the middle cerebral artery occlusion (MCAO) method. Blood-brain barrier (BBB) integrity was assessed using Evans blue dye. The permeability of human brain microvascular endothelial cells (HBMVECs) was evaluated using fluorescein isothiocyanate (FITC)-dextran permeation assays and trans-endothelial electrical resistance (TEER) measurements. Additionally, real-time polymerase chain reaction (PCR), immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were performed. We found that the administration of fenofibrate improved brain endothelial dysfunction by reducing the expression of vascular cell adhesion molecule- 1 (VCAM- 1) and E-selectin in MCAO mice. Furthermore, fenofibrate restored the expression of the tight junction protein occludin in the cortices of MCAO mice. Notably, fenofibrate alleviated BBB dysfunction in MCAO mice. In vitro studies demonstrated that fenofibrate ameliorated endothelial monolayer permeability under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions and inhibited the expression of VCAM- 1 and E-selectin in HBMVECs. Moreover, fenofibrate restored occludin expression following OGD/R. We identified a novel mechanism whereby fenofibrate suppressed the elevation of Egr- 1 induced by OGD/R; however, overexpression of Egr- 1 abrogated the protective effects of fenofibrate on the upregulation of VCAM- 1 and E-selectin and the downregulation of occludin induced by OGD/R. Furthermore, overexpression of early growth response- 1 (Egr- 1) negated the protective effects of fenofibrate on endothelial monolayer permeability and trans-endothelial electrical resistance (TEER). Our findings suggest that fenofibrate may be a promising therapeutic agent for stroke treatment.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fenofibrate maintains the integrity of the blood-brain barrier during cerebral ischemia-reperfusion injury by inhibiting Egr- 1.\",\"authors\":\"Weifeng Shan, Haiyan Lan, Yini Wu, Qiaomin Xu, Minji You, Jimin Wu\",\"doi\":\"10.1007/s11626-025-01044-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood-brain barrier (BBB) damage and dysfunction are critical pathological features associated with cerebral ischemia-reperfusion injury in stroke. Fenofibrate, a lipid-regulating drug, has an unclear role in BBB function during stroke. This study investigates the effects of fenofibrate on BBB disruption and cerebrovascular endothelial cells induced by ischemia-reperfusion. Cerebral ischemia-reperfusion injury (CIRI) models were established using the middle cerebral artery occlusion (MCAO) method. Blood-brain barrier (BBB) integrity was assessed using Evans blue dye. The permeability of human brain microvascular endothelial cells (HBMVECs) was evaluated using fluorescein isothiocyanate (FITC)-dextran permeation assays and trans-endothelial electrical resistance (TEER) measurements. Additionally, real-time polymerase chain reaction (PCR), immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were performed. We found that the administration of fenofibrate improved brain endothelial dysfunction by reducing the expression of vascular cell adhesion molecule- 1 (VCAM- 1) and E-selectin in MCAO mice. Furthermore, fenofibrate restored the expression of the tight junction protein occludin in the cortices of MCAO mice. Notably, fenofibrate alleviated BBB dysfunction in MCAO mice. In vitro studies demonstrated that fenofibrate ameliorated endothelial monolayer permeability under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions and inhibited the expression of VCAM- 1 and E-selectin in HBMVECs. Moreover, fenofibrate restored occludin expression following OGD/R. We identified a novel mechanism whereby fenofibrate suppressed the elevation of Egr- 1 induced by OGD/R; however, overexpression of Egr- 1 abrogated the protective effects of fenofibrate on the upregulation of VCAM- 1 and E-selectin and the downregulation of occludin induced by OGD/R. Furthermore, overexpression of early growth response- 1 (Egr- 1) negated the protective effects of fenofibrate on endothelial monolayer permeability and trans-endothelial electrical resistance (TEER). Our findings suggest that fenofibrate may be a promising therapeutic agent for stroke treatment.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01044-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01044-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血脑屏障(BBB)损伤和功能障碍是脑卒中缺血性再灌注损伤的重要病理特征。非诺贝特,一种调节血脂的药物,在脑卒中时血脑屏障功能中的作用尚不清楚。本研究探讨非诺贝特对缺血再灌注诱导的血脑屏障破坏和脑血管内皮细胞的影响。采用大脑中动脉闭塞(MCAO)法建立脑缺血再灌注损伤(CIRI)模型。采用Evans蓝染色评价血脑屏障(BBB)完整性。采用异硫氰酸荧光素(FITC)-葡聚糖渗透测定法和跨内皮电阻(TEER)测定法评价人脑微血管内皮细胞(HBMVECs)的通透性。此外,还进行了实时聚合酶链反应(PCR)、免疫组织化学、酶联免疫吸附试验(ELISA)和Western blot分析。我们发现非诺贝特通过降低MCAO小鼠血管细胞粘附分子- 1 (VCAM- 1)和e-选择素的表达来改善脑内皮功能障碍。此外,非诺贝特恢复了MCAO小鼠皮质紧密连接蛋白occludin的表达。值得注意的是,非诺贝特减轻了MCAO小鼠血脑屏障功能障碍。体外研究表明,非诺贝特改善氧-葡萄糖剥夺/再氧化(OGD/R)条件下内皮单层通透性,抑制HBMVECs中VCAM- 1和e -选择素的表达。此外,非诺贝特恢复OGD/R后occludin的表达。我们确定了非诺贝特抑制OGD/R诱导的Egr- 1升高的新机制;然而,Egr- 1的过表达使非诺贝特对OGD/R诱导的VCAM- 1和E-selectin上调以及occludin下调的保护作用消失。此外,早期生长反应- 1 (Egr- 1)的过表达否定了非诺贝特对内皮单层通透性和跨内皮电阻(TEER)的保护作用。我们的研究结果表明,非诺贝特可能是一种很有前途的治疗中风的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fenofibrate maintains the integrity of the blood-brain barrier during cerebral ischemia-reperfusion injury by inhibiting Egr- 1.

Blood-brain barrier (BBB) damage and dysfunction are critical pathological features associated with cerebral ischemia-reperfusion injury in stroke. Fenofibrate, a lipid-regulating drug, has an unclear role in BBB function during stroke. This study investigates the effects of fenofibrate on BBB disruption and cerebrovascular endothelial cells induced by ischemia-reperfusion. Cerebral ischemia-reperfusion injury (CIRI) models were established using the middle cerebral artery occlusion (MCAO) method. Blood-brain barrier (BBB) integrity was assessed using Evans blue dye. The permeability of human brain microvascular endothelial cells (HBMVECs) was evaluated using fluorescein isothiocyanate (FITC)-dextran permeation assays and trans-endothelial electrical resistance (TEER) measurements. Additionally, real-time polymerase chain reaction (PCR), immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were performed. We found that the administration of fenofibrate improved brain endothelial dysfunction by reducing the expression of vascular cell adhesion molecule- 1 (VCAM- 1) and E-selectin in MCAO mice. Furthermore, fenofibrate restored the expression of the tight junction protein occludin in the cortices of MCAO mice. Notably, fenofibrate alleviated BBB dysfunction in MCAO mice. In vitro studies demonstrated that fenofibrate ameliorated endothelial monolayer permeability under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions and inhibited the expression of VCAM- 1 and E-selectin in HBMVECs. Moreover, fenofibrate restored occludin expression following OGD/R. We identified a novel mechanism whereby fenofibrate suppressed the elevation of Egr- 1 induced by OGD/R; however, overexpression of Egr- 1 abrogated the protective effects of fenofibrate on the upregulation of VCAM- 1 and E-selectin and the downregulation of occludin induced by OGD/R. Furthermore, overexpression of early growth response- 1 (Egr- 1) negated the protective effects of fenofibrate on endothelial monolayer permeability and trans-endothelial electrical resistance (TEER). Our findings suggest that fenofibrate may be a promising therapeutic agent for stroke treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信