{"title":"利用贝叶斯信息增益建模认知情绪的唤醒潜能:由自由能量波动驱动的查询周期框架。","authors":"Hideyoshi Yanagisawa, Shimon Honda","doi":"10.3389/fpsyg.2025.1438080","DOIUrl":null,"url":null,"abstract":"<p><p>Epistemic emotions, such as curiosity and interest, drive the inquiry process. This study proposes a novel formulation of these emotions using two types of information gain derived from the principle of free energy minimization: Kullback-Leibler divergence (KLD), representing free energy reduction through recognition, and Bayesian surprise (BS), representing free energy reduction via Bayesian updating. Conventional Gaussian models predict an infinite divergence in information gain (KLD and BS) as prediction error increases, which contradicts the known limits of human cognitive resources. The key novelty of this study lies in a simple yet impactful modification: incorporating a uniform distribution into the Gaussian likelihood function to model neural activity under conditions of large prediction error. This modification yields an inverted U-shaped relationship between prediction error and both KLD and BS, producing a finite peak in information gain that better reflects cognitive realism. Based on this convexity, we propose that alternating the maximization of BS and KLD generates an ideal inquiry cycle that fluctuates around an optimal arousal level, with curiosity and interest driving this process. We further analyze how prediction uncertainty (prior variance) and observation uncertainty (likelihood variance) affect the peak of information gain. The results suggest that greater prediction uncertainty (reflecting open-mindedness) and lower observation uncertainty (indicating focused observation) promote higher information gains through broader exploration. This mathematical framework integrates the brain's free energy principle with arousal potential theory, providing a unified explanation of the Wundt curve as an information gain function and proposing an ideal inquiry process driven by epistemic emotions.</p>","PeriodicalId":12525,"journal":{"name":"Frontiers in Psychology","volume":"16 ","pages":"1438080"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling the arousal potential of epistemic emotions using Bayesian information gain: a framework for inquiry cycles driven by free energy fluctuations.\",\"authors\":\"Hideyoshi Yanagisawa, Shimon Honda\",\"doi\":\"10.3389/fpsyg.2025.1438080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epistemic emotions, such as curiosity and interest, drive the inquiry process. This study proposes a novel formulation of these emotions using two types of information gain derived from the principle of free energy minimization: Kullback-Leibler divergence (KLD), representing free energy reduction through recognition, and Bayesian surprise (BS), representing free energy reduction via Bayesian updating. Conventional Gaussian models predict an infinite divergence in information gain (KLD and BS) as prediction error increases, which contradicts the known limits of human cognitive resources. The key novelty of this study lies in a simple yet impactful modification: incorporating a uniform distribution into the Gaussian likelihood function to model neural activity under conditions of large prediction error. This modification yields an inverted U-shaped relationship between prediction error and both KLD and BS, producing a finite peak in information gain that better reflects cognitive realism. Based on this convexity, we propose that alternating the maximization of BS and KLD generates an ideal inquiry cycle that fluctuates around an optimal arousal level, with curiosity and interest driving this process. We further analyze how prediction uncertainty (prior variance) and observation uncertainty (likelihood variance) affect the peak of information gain. The results suggest that greater prediction uncertainty (reflecting open-mindedness) and lower observation uncertainty (indicating focused observation) promote higher information gains through broader exploration. This mathematical framework integrates the brain's free energy principle with arousal potential theory, providing a unified explanation of the Wundt curve as an information gain function and proposing an ideal inquiry process driven by epistemic emotions.</p>\",\"PeriodicalId\":12525,\"journal\":{\"name\":\"Frontiers in Psychology\",\"volume\":\"16 \",\"pages\":\"1438080\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3389/fpsyg.2025.1438080\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3389/fpsyg.2025.1438080","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling the arousal potential of epistemic emotions using Bayesian information gain: a framework for inquiry cycles driven by free energy fluctuations.
Epistemic emotions, such as curiosity and interest, drive the inquiry process. This study proposes a novel formulation of these emotions using two types of information gain derived from the principle of free energy minimization: Kullback-Leibler divergence (KLD), representing free energy reduction through recognition, and Bayesian surprise (BS), representing free energy reduction via Bayesian updating. Conventional Gaussian models predict an infinite divergence in information gain (KLD and BS) as prediction error increases, which contradicts the known limits of human cognitive resources. The key novelty of this study lies in a simple yet impactful modification: incorporating a uniform distribution into the Gaussian likelihood function to model neural activity under conditions of large prediction error. This modification yields an inverted U-shaped relationship between prediction error and both KLD and BS, producing a finite peak in information gain that better reflects cognitive realism. Based on this convexity, we propose that alternating the maximization of BS and KLD generates an ideal inquiry cycle that fluctuates around an optimal arousal level, with curiosity and interest driving this process. We further analyze how prediction uncertainty (prior variance) and observation uncertainty (likelihood variance) affect the peak of information gain. The results suggest that greater prediction uncertainty (reflecting open-mindedness) and lower observation uncertainty (indicating focused observation) promote higher information gains through broader exploration. This mathematical framework integrates the brain's free energy principle with arousal potential theory, providing a unified explanation of the Wundt curve as an information gain function and proposing an ideal inquiry process driven by epistemic emotions.
期刊介绍:
Frontiers in Psychology is the largest journal in its field, publishing rigorously peer-reviewed research across the psychological sciences, from clinical research to cognitive science, from perception to consciousness, from imaging studies to human factors, and from animal cognition to social psychology. Field Chief Editor Axel Cleeremans at the Free University of Brussels is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. The journal publishes the best research across the entire field of psychology. Today, psychological science is becoming increasingly important at all levels of society, from the treatment of clinical disorders to our basic understanding of how the mind works. It is highly interdisciplinary, borrowing questions from philosophy, methods from neuroscience and insights from clinical practice - all in the goal of furthering our grasp of human nature and society, as well as our ability to develop new intervention methods.