{"title":"氢化植物卵磷脂作为化妆品和制药辅料的理化研究。","authors":"Fabio Strati , Simon Drescher , Chen Shen , Reinhard H.H. Neubert , Gerald Brezesinski","doi":"10.1016/j.ejps.2025.107144","DOIUrl":null,"url":null,"abstract":"<div><div>Lecithin is a generic term that is often used to indicate a product mainly constituted of phospholipids. Lecithins can be used in pharmaceutical and cosmetic field as wetting agents, emulsifiers and building blocks for the production of liposomes and micelles. One of its main sources are plants. From their extraction a final product mainly constituted of phosphatidylcholines and phosphatidylethanolamines can be obtained. Common issue connected to freshly extracted lecithins is the presence of a product rich in double bonds subject to photo and air oxidation. By adding in the purification process a further catalytic step, it is possible to form stable hydrogenated lecithin products. Despite their widespread use, little is known about the physicochemical properties of such hydrogenated lecithins, detailed studies mainly based on X-ray scattering methods on mono- and multi-layers have been performed. Additionally, the emulsifying properties of these lecithins such as Hydrophilic-Lipophilic Deviation (HLD parameter) and solubility have also been studied. General findings are that mixtures with higher amounts of phosphatidylcholines (90–100 %) formed a well-defined lamellar phase showing in monolayers complete absence of charge, while lecithins with lower phosphatidylcholine contents (75–80 %) formed charged monolayers and positionally uncorrelated bilayers due to the presence of charged species. The hydrogenated phospholipids (PLs) studied were highly soluble in several co-solvents which are suitable for the incorporation of these phospholipids into relevant dermal formulations. The studied PLs are able to stabilize innovative dermal colloidal formulations such as cerosomes and to improve the incorporation of them into Stratum corneum models.</div><div>In conclusion, the following studies will allow a more rational selection of hydrogenated lecithins for the formulation of cosmetic and pharmaceutical products.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"211 ","pages":"Article 107144"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogenated plant-based lecithins as excipients for cosmetic and pharmaceutical applications: A physical-chemical study\",\"authors\":\"Fabio Strati , Simon Drescher , Chen Shen , Reinhard H.H. Neubert , Gerald Brezesinski\",\"doi\":\"10.1016/j.ejps.2025.107144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lecithin is a generic term that is often used to indicate a product mainly constituted of phospholipids. Lecithins can be used in pharmaceutical and cosmetic field as wetting agents, emulsifiers and building blocks for the production of liposomes and micelles. One of its main sources are plants. From their extraction a final product mainly constituted of phosphatidylcholines and phosphatidylethanolamines can be obtained. Common issue connected to freshly extracted lecithins is the presence of a product rich in double bonds subject to photo and air oxidation. By adding in the purification process a further catalytic step, it is possible to form stable hydrogenated lecithin products. Despite their widespread use, little is known about the physicochemical properties of such hydrogenated lecithins, detailed studies mainly based on X-ray scattering methods on mono- and multi-layers have been performed. Additionally, the emulsifying properties of these lecithins such as Hydrophilic-Lipophilic Deviation (HLD parameter) and solubility have also been studied. General findings are that mixtures with higher amounts of phosphatidylcholines (90–100 %) formed a well-defined lamellar phase showing in monolayers complete absence of charge, while lecithins with lower phosphatidylcholine contents (75–80 %) formed charged monolayers and positionally uncorrelated bilayers due to the presence of charged species. The hydrogenated phospholipids (PLs) studied were highly soluble in several co-solvents which are suitable for the incorporation of these phospholipids into relevant dermal formulations. The studied PLs are able to stabilize innovative dermal colloidal formulations such as cerosomes and to improve the incorporation of them into Stratum corneum models.</div><div>In conclusion, the following studies will allow a more rational selection of hydrogenated lecithins for the formulation of cosmetic and pharmaceutical products.</div></div>\",\"PeriodicalId\":12018,\"journal\":{\"name\":\"European Journal of Pharmaceutical Sciences\",\"volume\":\"211 \",\"pages\":\"Article 107144\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928098725001435\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725001435","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Hydrogenated plant-based lecithins as excipients for cosmetic and pharmaceutical applications: A physical-chemical study
Lecithin is a generic term that is often used to indicate a product mainly constituted of phospholipids. Lecithins can be used in pharmaceutical and cosmetic field as wetting agents, emulsifiers and building blocks for the production of liposomes and micelles. One of its main sources are plants. From their extraction a final product mainly constituted of phosphatidylcholines and phosphatidylethanolamines can be obtained. Common issue connected to freshly extracted lecithins is the presence of a product rich in double bonds subject to photo and air oxidation. By adding in the purification process a further catalytic step, it is possible to form stable hydrogenated lecithin products. Despite their widespread use, little is known about the physicochemical properties of such hydrogenated lecithins, detailed studies mainly based on X-ray scattering methods on mono- and multi-layers have been performed. Additionally, the emulsifying properties of these lecithins such as Hydrophilic-Lipophilic Deviation (HLD parameter) and solubility have also been studied. General findings are that mixtures with higher amounts of phosphatidylcholines (90–100 %) formed a well-defined lamellar phase showing in monolayers complete absence of charge, while lecithins with lower phosphatidylcholine contents (75–80 %) formed charged monolayers and positionally uncorrelated bilayers due to the presence of charged species. The hydrogenated phospholipids (PLs) studied were highly soluble in several co-solvents which are suitable for the incorporation of these phospholipids into relevant dermal formulations. The studied PLs are able to stabilize innovative dermal colloidal formulations such as cerosomes and to improve the incorporation of them into Stratum corneum models.
In conclusion, the following studies will allow a more rational selection of hydrogenated lecithins for the formulation of cosmetic and pharmaceutical products.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.