基于灰度值轮廓的Meibography评估和自动meibomiian Gland检测。

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Riccardo Forni, Ida Maruotto, Anna Zanuccoli, Riccardo Nicoletti, Luca Trimigno, Matteo Corbellino, Sònia Travé-Huarte, Giuseppe Giannaccare, Paolo Gargiulo
{"title":"基于灰度值轮廓的Meibography评估和自动meibomiian Gland检测。","authors":"Riccardo Forni, Ida Maruotto, Anna Zanuccoli, Riccardo Nicoletti, Luca Trimigno, Matteo Corbellino, Sònia Travé-Huarte, Giuseppe Giannaccare, Paolo Gargiulo","doi":"10.3390/diagnostics15101199","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective</b>: This study introduces a novel method for the automated detection and quantification of meibomian gland morphology using gray value distribution profiles. The approach addresses limitations in traditional manual and deep learning-based meibography analysis, which are often time-consuming and prone to variability. <b>Methods</b>: This study enrolled 100 volunteers (mean age 40 ± 16 years, range 18-85) who suffered from dry eye and responded to the Ocular Surface Disease Index questionnaire for scoring ocular discomfort symptoms and infrared meibography for capturing imaging of meibomian glands. By leveraging pixel brightness variations, the algorithm provides real-time detection and classification of long, medium, and short meibomian glands, offering a quantitative assessment of gland atrophy. <b>Results</b>: A novel parameter, namely \"atrophy index\", a quantitative measure of gland degeneration, is introduced. Atrophy index is the first instrumental measurement to assess single- and multiple-gland morphology. <b>Conclusions</b>: This tool provides a robust, scalable metric for integrating quantitative meibography into clinical practice, making it suitable for real-time screening and advancing the management of dry eyes owing to meibomian gland dysfunction.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110248/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing Meibography Assessment and Automated Meibomian Gland Detection Using Gray Value Profiles.\",\"authors\":\"Riccardo Forni, Ida Maruotto, Anna Zanuccoli, Riccardo Nicoletti, Luca Trimigno, Matteo Corbellino, Sònia Travé-Huarte, Giuseppe Giannaccare, Paolo Gargiulo\",\"doi\":\"10.3390/diagnostics15101199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective</b>: This study introduces a novel method for the automated detection and quantification of meibomian gland morphology using gray value distribution profiles. The approach addresses limitations in traditional manual and deep learning-based meibography analysis, which are often time-consuming and prone to variability. <b>Methods</b>: This study enrolled 100 volunteers (mean age 40 ± 16 years, range 18-85) who suffered from dry eye and responded to the Ocular Surface Disease Index questionnaire for scoring ocular discomfort symptoms and infrared meibography for capturing imaging of meibomian glands. By leveraging pixel brightness variations, the algorithm provides real-time detection and classification of long, medium, and short meibomian glands, offering a quantitative assessment of gland atrophy. <b>Results</b>: A novel parameter, namely \\\"atrophy index\\\", a quantitative measure of gland degeneration, is introduced. Atrophy index is the first instrumental measurement to assess single- and multiple-gland morphology. <b>Conclusions</b>: This tool provides a robust, scalable metric for integrating quantitative meibography into clinical practice, making it suitable for real-time screening and advancing the management of dry eyes owing to meibomian gland dysfunction.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15101199\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15101199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:介绍一种基于灰度分布的睑板腺形态学自动检测与定量的新方法。该方法解决了传统手工和基于深度学习的meibography分析的局限性,这些分析通常耗时且容易发生变化。方法:本研究招募了100名患有干眼症的志愿者(平均年龄40±16岁,年龄范围18-85岁),并对眼表疾病指数问卷进行了眼部不适症状评分,并对睑板腺的红外成像进行了记录。通过利用像素亮度变化,该算法提供长、中、短睑板腺的实时检测和分类,对腺体萎缩进行定量评估。结果:引入了一个新的参数,即“萎缩指数”,这是一个定量衡量腺体退化的指标。萎缩指数是评估单个和多个腺体形态的第一个仪器测量。结论:该工具提供了一个强大的、可扩展的指标,将定量睑板造影整合到临床实践中,使其适合于实时筛查,并推进因睑板腺功能障碍引起的干眼的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Meibography Assessment and Automated Meibomian Gland Detection Using Gray Value Profiles.

Objective: This study introduces a novel method for the automated detection and quantification of meibomian gland morphology using gray value distribution profiles. The approach addresses limitations in traditional manual and deep learning-based meibography analysis, which are often time-consuming and prone to variability. Methods: This study enrolled 100 volunteers (mean age 40 ± 16 years, range 18-85) who suffered from dry eye and responded to the Ocular Surface Disease Index questionnaire for scoring ocular discomfort symptoms and infrared meibography for capturing imaging of meibomian glands. By leveraging pixel brightness variations, the algorithm provides real-time detection and classification of long, medium, and short meibomian glands, offering a quantitative assessment of gland atrophy. Results: A novel parameter, namely "atrophy index", a quantitative measure of gland degeneration, is introduced. Atrophy index is the first instrumental measurement to assess single- and multiple-gland morphology. Conclusions: This tool provides a robust, scalable metric for integrating quantitative meibography into clinical practice, making it suitable for real-time screening and advancing the management of dry eyes owing to meibomian gland dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信