{"title":"用双聚类实时检测混合格式考试作弊。","authors":"Hyeryung Lee, Walter P Vispoel","doi":"10.1177/00131644251333143","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated a real-time biclustering method for detecting cheating on mixed-format assessments that included dichotomous, polytomous, and multi-part items. Biclustering jointly groups examinees and items by identifying subgroups of test takers who exhibit similar response patterns on specific subsets of items. This method's flexibility and minimal assumptions about examinee behavior make it computationally efficient and highly adaptable. To further finetune accuracy and reduce false positives in real-time detection, enhanced statistical significance tests were incorporated into the illustrated algorithms. Two simulation studies were conducted to assess detection across varying testing conditions. In the first study, the method effectively detected cheating on tests composed entirely of either dichotomous or non-dichotomous items. In the second study, we examined tests with varying mixed item formats and again observed strong detection performance. In both studies, detection performance was examined at each timestamp in real time and evaluated under three varying conditions: proportion of cheaters, cheating group size, and proportion of compromised items. Across conditions, the method demonstrated strong computational efficiency, underscoring its suitability for real-time applications. Overall, these results highlight the adaptability, versatility, and effectiveness of biclustering in detecting cheating in real time while maintaining low false-positive rates.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251333143"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104213/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Biclustering to Detect Cheating in Real Time on Mixed-Format Tests.\",\"authors\":\"Hyeryung Lee, Walter P Vispoel\",\"doi\":\"10.1177/00131644251333143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We evaluated a real-time biclustering method for detecting cheating on mixed-format assessments that included dichotomous, polytomous, and multi-part items. Biclustering jointly groups examinees and items by identifying subgroups of test takers who exhibit similar response patterns on specific subsets of items. This method's flexibility and minimal assumptions about examinee behavior make it computationally efficient and highly adaptable. To further finetune accuracy and reduce false positives in real-time detection, enhanced statistical significance tests were incorporated into the illustrated algorithms. Two simulation studies were conducted to assess detection across varying testing conditions. In the first study, the method effectively detected cheating on tests composed entirely of either dichotomous or non-dichotomous items. In the second study, we examined tests with varying mixed item formats and again observed strong detection performance. In both studies, detection performance was examined at each timestamp in real time and evaluated under three varying conditions: proportion of cheaters, cheating group size, and proportion of compromised items. Across conditions, the method demonstrated strong computational efficiency, underscoring its suitability for real-time applications. Overall, these results highlight the adaptability, versatility, and effectiveness of biclustering in detecting cheating in real time while maintaining low false-positive rates.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\" \",\"pages\":\"00131644251333143\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644251333143\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251333143","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Using Biclustering to Detect Cheating in Real Time on Mixed-Format Tests.
We evaluated a real-time biclustering method for detecting cheating on mixed-format assessments that included dichotomous, polytomous, and multi-part items. Biclustering jointly groups examinees and items by identifying subgroups of test takers who exhibit similar response patterns on specific subsets of items. This method's flexibility and minimal assumptions about examinee behavior make it computationally efficient and highly adaptable. To further finetune accuracy and reduce false positives in real-time detection, enhanced statistical significance tests were incorporated into the illustrated algorithms. Two simulation studies were conducted to assess detection across varying testing conditions. In the first study, the method effectively detected cheating on tests composed entirely of either dichotomous or non-dichotomous items. In the second study, we examined tests with varying mixed item formats and again observed strong detection performance. In both studies, detection performance was examined at each timestamp in real time and evaluated under three varying conditions: proportion of cheaters, cheating group size, and proportion of compromised items. Across conditions, the method demonstrated strong computational efficiency, underscoring its suitability for real-time applications. Overall, these results highlight the adaptability, versatility, and effectiveness of biclustering in detecting cheating in real time while maintaining low false-positive rates.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.