用双聚类实时检测混合格式考试作弊。

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hyeryung Lee, Walter P Vispoel
{"title":"用双聚类实时检测混合格式考试作弊。","authors":"Hyeryung Lee, Walter P Vispoel","doi":"10.1177/00131644251333143","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated a real-time biclustering method for detecting cheating on mixed-format assessments that included dichotomous, polytomous, and multi-part items. Biclustering jointly groups examinees and items by identifying subgroups of test takers who exhibit similar response patterns on specific subsets of items. This method's flexibility and minimal assumptions about examinee behavior make it computationally efficient and highly adaptable. To further finetune accuracy and reduce false positives in real-time detection, enhanced statistical significance tests were incorporated into the illustrated algorithms. Two simulation studies were conducted to assess detection across varying testing conditions. In the first study, the method effectively detected cheating on tests composed entirely of either dichotomous or non-dichotomous items. In the second study, we examined tests with varying mixed item formats and again observed strong detection performance. In both studies, detection performance was examined at each timestamp in real time and evaluated under three varying conditions: proportion of cheaters, cheating group size, and proportion of compromised items. Across conditions, the method demonstrated strong computational efficiency, underscoring its suitability for real-time applications. Overall, these results highlight the adaptability, versatility, and effectiveness of biclustering in detecting cheating in real time while maintaining low false-positive rates.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251333143"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104213/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Biclustering to Detect Cheating in Real Time on Mixed-Format Tests.\",\"authors\":\"Hyeryung Lee, Walter P Vispoel\",\"doi\":\"10.1177/00131644251333143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We evaluated a real-time biclustering method for detecting cheating on mixed-format assessments that included dichotomous, polytomous, and multi-part items. Biclustering jointly groups examinees and items by identifying subgroups of test takers who exhibit similar response patterns on specific subsets of items. This method's flexibility and minimal assumptions about examinee behavior make it computationally efficient and highly adaptable. To further finetune accuracy and reduce false positives in real-time detection, enhanced statistical significance tests were incorporated into the illustrated algorithms. Two simulation studies were conducted to assess detection across varying testing conditions. In the first study, the method effectively detected cheating on tests composed entirely of either dichotomous or non-dichotomous items. In the second study, we examined tests with varying mixed item formats and again observed strong detection performance. In both studies, detection performance was examined at each timestamp in real time and evaluated under three varying conditions: proportion of cheaters, cheating group size, and proportion of compromised items. Across conditions, the method demonstrated strong computational efficiency, underscoring its suitability for real-time applications. Overall, these results highlight the adaptability, versatility, and effectiveness of biclustering in detecting cheating in real time while maintaining low false-positive rates.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\" \",\"pages\":\"00131644251333143\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644251333143\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251333143","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们评估了一种实时双聚类方法,用于检测混合格式评估中的作弊行为,包括二分类、多分类和多部分项目。双聚类通过识别在特定项目子集上表现出相似反应模式的考生的子组来联合分组考生和项目。该方法的灵活性和对考生行为的最小假设使其计算效率高,适应性强。为了进一步微调准确性并减少实时检测中的误报,在所示算法中加入了增强的统计显著性检验。进行了两个模拟研究,以评估在不同测试条件下的检测。在第一项研究中,该方法有效地检测了完全由二分类或非二分类组成的测试中的作弊行为。在第二项研究中,我们检查了不同混合项目格式的测试,再次观察到很强的检测性能。在这两项研究中,检测性能在每个时间戳都被实时检查,并在三种不同的条件下进行评估:作弊者的比例、作弊群体的规模和受损物品的比例。在各种条件下,该方法都显示出强大的计算效率,强调了其对实时应用的适用性。总的来说,这些结果突出了双聚类在实时检测作弊同时保持低假阳性率方面的适应性、多功能性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Biclustering to Detect Cheating in Real Time on Mixed-Format Tests.

We evaluated a real-time biclustering method for detecting cheating on mixed-format assessments that included dichotomous, polytomous, and multi-part items. Biclustering jointly groups examinees and items by identifying subgroups of test takers who exhibit similar response patterns on specific subsets of items. This method's flexibility and minimal assumptions about examinee behavior make it computationally efficient and highly adaptable. To further finetune accuracy and reduce false positives in real-time detection, enhanced statistical significance tests were incorporated into the illustrated algorithms. Two simulation studies were conducted to assess detection across varying testing conditions. In the first study, the method effectively detected cheating on tests composed entirely of either dichotomous or non-dichotomous items. In the second study, we examined tests with varying mixed item formats and again observed strong detection performance. In both studies, detection performance was examined at each timestamp in real time and evaluated under three varying conditions: proportion of cheaters, cheating group size, and proportion of compromised items. Across conditions, the method demonstrated strong computational efficiency, underscoring its suitability for real-time applications. Overall, these results highlight the adaptability, versatility, and effectiveness of biclustering in detecting cheating in real time while maintaining low false-positive rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信