Andrey Bondarenko, Vilen Jumutc, Antoine Netter, Fanny Duchateau, Henrique Mendonca Abrão, Saman Noorzadeh, Giuseppe Giacomello, Filippo Ferrari, Nicolas Bourdel, Ulrik Bak Kirk, Dmitrijs Bļizņuks
{"title":"腹腔镜手术中的目标检测:基于自定义子宫内膜异位症数据集的深度学习模型的比较研究。","authors":"Andrey Bondarenko, Vilen Jumutc, Antoine Netter, Fanny Duchateau, Henrique Mendonca Abrão, Saman Noorzadeh, Giuseppe Giacomello, Filippo Ferrari, Nicolas Bourdel, Ulrik Bak Kirk, Dmitrijs Bļizņuks","doi":"10.3390/diagnostics15101254","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Laparoscopic surgery for endometriosis presents unique challenges due to the complexity of and variability in lesion appearances within the abdominal cavity. This study investigates the application of deep learning models for object detection in laparoscopic videos, aiming to assist surgeons in accurately identifying and localizing endometriosis lesions and related anatomical structures. A custom dataset was curated, comprising of 199 video sequences and 205,725 frames. Of these, 17,560 frames were meticulously annotated by medical professionals. The dataset includes object detection annotations for 10 object classes relevant to endometriosis, alongside segmentation masks for some classes. <b>Methods:</b> To address the object detection task, we evaluated the performance of two deep learning models-FasterRCNN and YOLOv9-under both stratified and non-stratified training scenarios. <b>Results:</b> The experimental results demonstrated that stratified training significantly reduced the risk of data leakage and improved model generalization. The best-performing FasterRCNN object detection model achieved a high average test precision of 0.9811 ± 0.0084, recall of 0.7083 ± 0.0807, and mAP50 (mean average precision at 50% overlap) of 0.8185 ± 0.0562 across all presented classes. Despite these successes, the study also highlights the challenges posed by the weak annotations and class imbalances in the dataset, which impacted overall model performances. <b>Conclusions:</b> In conclusion, this study provides valuable insights into the application of deep learning for enhancing laparoscopic surgical precision in endometriosis treatment. The findings underscore the importance of robust dataset curation and advanced training strategies in developing reliable AI-assisted tools for surgical interventions. The latter could potentially improve the guidance of surgical interventions and prevent blind spots occurring in difficult to reach abdominal regions. Future work will focus on refining the dataset and exploring more sophisticated model architectures to further improve detection accuracy.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Object Detection in Laparoscopic Surgery: A Comparative Study of Deep Learning Models on a Custom Endometriosis Dataset.\",\"authors\":\"Andrey Bondarenko, Vilen Jumutc, Antoine Netter, Fanny Duchateau, Henrique Mendonca Abrão, Saman Noorzadeh, Giuseppe Giacomello, Filippo Ferrari, Nicolas Bourdel, Ulrik Bak Kirk, Dmitrijs Bļizņuks\",\"doi\":\"10.3390/diagnostics15101254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Laparoscopic surgery for endometriosis presents unique challenges due to the complexity of and variability in lesion appearances within the abdominal cavity. This study investigates the application of deep learning models for object detection in laparoscopic videos, aiming to assist surgeons in accurately identifying and localizing endometriosis lesions and related anatomical structures. A custom dataset was curated, comprising of 199 video sequences and 205,725 frames. Of these, 17,560 frames were meticulously annotated by medical professionals. The dataset includes object detection annotations for 10 object classes relevant to endometriosis, alongside segmentation masks for some classes. <b>Methods:</b> To address the object detection task, we evaluated the performance of two deep learning models-FasterRCNN and YOLOv9-under both stratified and non-stratified training scenarios. <b>Results:</b> The experimental results demonstrated that stratified training significantly reduced the risk of data leakage and improved model generalization. The best-performing FasterRCNN object detection model achieved a high average test precision of 0.9811 ± 0.0084, recall of 0.7083 ± 0.0807, and mAP50 (mean average precision at 50% overlap) of 0.8185 ± 0.0562 across all presented classes. Despite these successes, the study also highlights the challenges posed by the weak annotations and class imbalances in the dataset, which impacted overall model performances. <b>Conclusions:</b> In conclusion, this study provides valuable insights into the application of deep learning for enhancing laparoscopic surgical precision in endometriosis treatment. The findings underscore the importance of robust dataset curation and advanced training strategies in developing reliable AI-assisted tools for surgical interventions. The latter could potentially improve the guidance of surgical interventions and prevent blind spots occurring in difficult to reach abdominal regions. Future work will focus on refining the dataset and exploring more sophisticated model architectures to further improve detection accuracy.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15101254\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15101254","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Object Detection in Laparoscopic Surgery: A Comparative Study of Deep Learning Models on a Custom Endometriosis Dataset.
Background: Laparoscopic surgery for endometriosis presents unique challenges due to the complexity of and variability in lesion appearances within the abdominal cavity. This study investigates the application of deep learning models for object detection in laparoscopic videos, aiming to assist surgeons in accurately identifying and localizing endometriosis lesions and related anatomical structures. A custom dataset was curated, comprising of 199 video sequences and 205,725 frames. Of these, 17,560 frames were meticulously annotated by medical professionals. The dataset includes object detection annotations for 10 object classes relevant to endometriosis, alongside segmentation masks for some classes. Methods: To address the object detection task, we evaluated the performance of two deep learning models-FasterRCNN and YOLOv9-under both stratified and non-stratified training scenarios. Results: The experimental results demonstrated that stratified training significantly reduced the risk of data leakage and improved model generalization. The best-performing FasterRCNN object detection model achieved a high average test precision of 0.9811 ± 0.0084, recall of 0.7083 ± 0.0807, and mAP50 (mean average precision at 50% overlap) of 0.8185 ± 0.0562 across all presented classes. Despite these successes, the study also highlights the challenges posed by the weak annotations and class imbalances in the dataset, which impacted overall model performances. Conclusions: In conclusion, this study provides valuable insights into the application of deep learning for enhancing laparoscopic surgical precision in endometriosis treatment. The findings underscore the importance of robust dataset curation and advanced training strategies in developing reliable AI-assisted tools for surgical interventions. The latter could potentially improve the guidance of surgical interventions and prevent blind spots occurring in difficult to reach abdominal regions. Future work will focus on refining the dataset and exploring more sophisticated model architectures to further improve detection accuracy.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.