新型亚喹EAPB02303是治疗急性髓系白血病的有效药物。

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-05-20 DOI:10.3390/biom15050741
Perla Makhoul, Rita Hleihel, Shaymaa Itani, Maguy Hamie, Stephanie Pagniagua-Gayraud, Cindy Patinote, Myriam Richaud, Raghida Abou Merhi, Marwan El-Sabban, Simon Galas, Carine Deleuze-Masquefa, Pierre-Antoine Bonnet, Hiba El Hajj
{"title":"新型亚喹EAPB02303是治疗急性髓系白血病的有效药物。","authors":"Perla Makhoul, Rita Hleihel, Shaymaa Itani, Maguy Hamie, Stephanie Pagniagua-Gayraud, Cindy Patinote, Myriam Richaud, Raghida Abou Merhi, Marwan El-Sabban, Simon Galas, Carine Deleuze-Masquefa, Pierre-Antoine Bonnet, Hiba El Hajj","doi":"10.3390/biom15050741","DOIUrl":null,"url":null,"abstract":"<p><p>Although 60% of AML patients respond well to standard chemotherapy, most patients eventually relapse, develop chemoresistance, and do not survive more than five years. Targeted therapies, including analogs of imiquimod belonging to the family of imiqualines, emerged as promising agents against AML. Notably, the first-generation imiqualine EAPB0503 proved selective potency against nucleophosmin-1-mutant (NPM1c) AML. Recently, chemical modifications of EAPB0503 led to the development of the lead compound from the second generation, EAPB02303. Here, we demonstrate that EAPB02303 displays 200-fold greater potency, broader activity across AML subtypes, and, importantly, a distinct mechanistic profile when compared to EAPB0503. Unlike EAPB0503, which primarily targeted <i>NPM1c</i> AML cells, EAPB02303 exhibits broad-spectrum activity across various AML subtypes. Remarkably, EAPB02303 anti-leukemic activity was attributed to the inhibition of PI3K/AKT/mTOR signaling activity. Nevertheless, NPM1c AML cells were more sensitive to EAPB02303, likely due to its ability to promote NPM1c protein degradation. In vivo, EAPB02303 potently reduced the leukemic burden and improved organ tumor infiltration in both wt-<i>NPM1</i> and <i>NPM1c</i> AML xenograft mice. Yet, the significant prolonged survival was exclusive to <i>NPM1c</i> AML xenografts, likely due to superior response conferred by NPM1c degradation. Overall, these findings highlight the potential of EAPB02303 as a powerful therapeutic agent for a range of AML subtypes, supporting its further development for broader clinical use.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109066/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Novel Imiqualine EAPB02303 Is a Potent Drug for Treating Acute Myeloid Leukemia.\",\"authors\":\"Perla Makhoul, Rita Hleihel, Shaymaa Itani, Maguy Hamie, Stephanie Pagniagua-Gayraud, Cindy Patinote, Myriam Richaud, Raghida Abou Merhi, Marwan El-Sabban, Simon Galas, Carine Deleuze-Masquefa, Pierre-Antoine Bonnet, Hiba El Hajj\",\"doi\":\"10.3390/biom15050741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although 60% of AML patients respond well to standard chemotherapy, most patients eventually relapse, develop chemoresistance, and do not survive more than five years. Targeted therapies, including analogs of imiquimod belonging to the family of imiqualines, emerged as promising agents against AML. Notably, the first-generation imiqualine EAPB0503 proved selective potency against nucleophosmin-1-mutant (NPM1c) AML. Recently, chemical modifications of EAPB0503 led to the development of the lead compound from the second generation, EAPB02303. Here, we demonstrate that EAPB02303 displays 200-fold greater potency, broader activity across AML subtypes, and, importantly, a distinct mechanistic profile when compared to EAPB0503. Unlike EAPB0503, which primarily targeted <i>NPM1c</i> AML cells, EAPB02303 exhibits broad-spectrum activity across various AML subtypes. Remarkably, EAPB02303 anti-leukemic activity was attributed to the inhibition of PI3K/AKT/mTOR signaling activity. Nevertheless, NPM1c AML cells were more sensitive to EAPB02303, likely due to its ability to promote NPM1c protein degradation. In vivo, EAPB02303 potently reduced the leukemic burden and improved organ tumor infiltration in both wt-<i>NPM1</i> and <i>NPM1c</i> AML xenograft mice. Yet, the significant prolonged survival was exclusive to <i>NPM1c</i> AML xenografts, likely due to superior response conferred by NPM1c degradation. Overall, these findings highlight the potential of EAPB02303 as a powerful therapeutic agent for a range of AML subtypes, supporting its further development for broader clinical use.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15050741\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050741","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然60%的AML患者对标准化疗反应良好,但大多数患者最终会复发,产生化疗耐药,存活时间不超过5年。靶向治疗,包括属于亚胺喹类药物家族的咪喹莫特类似物,成为治疗AML的有希望的药物。值得注意的是,第一代亚喹EAPB0503证明了对核磷蛋白-1突变体(NPM1c) AML的选择性效力。最近,对EAPB0503的化学修饰导致了第二代先导化合物EAPB02303的发展。本研究表明,与EAPB0503相比,EAPB02303在AML亚型中表现出200倍的效力,更广泛的活性,更重要的是,具有独特的机制特征。与主要靶向NPM1c AML细胞的EAPB0503不同,EAPB02303在各种AML亚型中表现出广谱活性。值得注意的是,EAPB02303抗白血病活性归因于抑制PI3K/AKT/mTOR信号活性。然而,NPM1c AML细胞对EAPB02303更敏感,可能是由于其促进NPM1c蛋白降解的能力。在体内,EAPB02303有效地减轻了wt-NPM1和NPM1c AML异种移植小鼠的白血病负担,并改善了器官肿瘤浸润。然而,显著延长的生存期是NPM1c AML异种移植物所独有的,可能是由于NPM1c降解所带来的优越反应。总的来说,这些发现突出了EAPB02303作为一系列AML亚型的强大治疗剂的潜力,支持其进一步开发用于更广泛的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Novel Imiqualine EAPB02303 Is a Potent Drug for Treating Acute Myeloid Leukemia.

Although 60% of AML patients respond well to standard chemotherapy, most patients eventually relapse, develop chemoresistance, and do not survive more than five years. Targeted therapies, including analogs of imiquimod belonging to the family of imiqualines, emerged as promising agents against AML. Notably, the first-generation imiqualine EAPB0503 proved selective potency against nucleophosmin-1-mutant (NPM1c) AML. Recently, chemical modifications of EAPB0503 led to the development of the lead compound from the second generation, EAPB02303. Here, we demonstrate that EAPB02303 displays 200-fold greater potency, broader activity across AML subtypes, and, importantly, a distinct mechanistic profile when compared to EAPB0503. Unlike EAPB0503, which primarily targeted NPM1c AML cells, EAPB02303 exhibits broad-spectrum activity across various AML subtypes. Remarkably, EAPB02303 anti-leukemic activity was attributed to the inhibition of PI3K/AKT/mTOR signaling activity. Nevertheless, NPM1c AML cells were more sensitive to EAPB02303, likely due to its ability to promote NPM1c protein degradation. In vivo, EAPB02303 potently reduced the leukemic burden and improved organ tumor infiltration in both wt-NPM1 and NPM1c AML xenograft mice. Yet, the significant prolonged survival was exclusive to NPM1c AML xenografts, likely due to superior response conferred by NPM1c degradation. Overall, these findings highlight the potential of EAPB02303 as a powerful therapeutic agent for a range of AML subtypes, supporting its further development for broader clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信