Hemendra J Vekaria, Sarah J Shelley, Sarah J Messmer, Prashant D Kunjadia, Christopher J McLouth, Patrick G Sullivan, Justin F Fraser, Keith R Pennypacker, Chirayu D Pandya
{"title":"白血病抑制因子对缺血性卒中后线粒体生物能量学的性别和组织特异性影响。","authors":"Hemendra J Vekaria, Sarah J Shelley, Sarah J Messmer, Prashant D Kunjadia, Christopher J McLouth, Patrick G Sullivan, Justin F Fraser, Keith R Pennypacker, Chirayu D Pandya","doi":"10.3390/biom15050738","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress due to increased reactive oxygen species (ROS) formation and/or inflammation is considered to play an important role in ischemic stroke injury. Leukemia inhibitory factor (LIF) has been shown to protect both oligodendrocytes and neurons from ischemia by upregulating endogenous anti-oxidants, though the effect of ischemia and the protective role of LIF treatment in mitochondrial function have not been studied. The goal of this study was to determine whether LIF protects ischemia-induced altered mitochondrial bioenergetics in reproductively senescent aged rats of both sexes (≥18 months old), approximately equivalent to the average age of human stroke patients. Animals were euthanized at 3 days after permanent middle cerebral artery occlusion (MCAO) surgery. We found that MCAO surgery significantly reduced mitochondrial oxidative phosphorylation in both the ipsilateral striatum and prefrontal cortex in male aged rats compared to their respective contralateral regions of the brain. MCAO injury showed mitochondrial bioenergetic dysfunction only in the striatum in female rats; however, the prefrontal cortex remained unaffected to the injury. LIF-treated rats significantly prevented mitochondrial dysfunction in the striatum in male rats compared to their vehicle-treated counterparts. Collectively, MCAO-induced mitochondrial dysfunction and LIF's potential as a therapeutic biomolecule exhibited sex- and tissue-specific effects, varying between the striatum and prefrontal cortex in male and female rats.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109232/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sex- and Tissue-Specific Effects of Leukemia Inhibitory Factor on Mitochondrial Bioenergetics Following Ischemic Stroke.\",\"authors\":\"Hemendra J Vekaria, Sarah J Shelley, Sarah J Messmer, Prashant D Kunjadia, Christopher J McLouth, Patrick G Sullivan, Justin F Fraser, Keith R Pennypacker, Chirayu D Pandya\",\"doi\":\"10.3390/biom15050738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress due to increased reactive oxygen species (ROS) formation and/or inflammation is considered to play an important role in ischemic stroke injury. Leukemia inhibitory factor (LIF) has been shown to protect both oligodendrocytes and neurons from ischemia by upregulating endogenous anti-oxidants, though the effect of ischemia and the protective role of LIF treatment in mitochondrial function have not been studied. The goal of this study was to determine whether LIF protects ischemia-induced altered mitochondrial bioenergetics in reproductively senescent aged rats of both sexes (≥18 months old), approximately equivalent to the average age of human stroke patients. Animals were euthanized at 3 days after permanent middle cerebral artery occlusion (MCAO) surgery. We found that MCAO surgery significantly reduced mitochondrial oxidative phosphorylation in both the ipsilateral striatum and prefrontal cortex in male aged rats compared to their respective contralateral regions of the brain. MCAO injury showed mitochondrial bioenergetic dysfunction only in the striatum in female rats; however, the prefrontal cortex remained unaffected to the injury. LIF-treated rats significantly prevented mitochondrial dysfunction in the striatum in male rats compared to their vehicle-treated counterparts. Collectively, MCAO-induced mitochondrial dysfunction and LIF's potential as a therapeutic biomolecule exhibited sex- and tissue-specific effects, varying between the striatum and prefrontal cortex in male and female rats.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109232/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15050738\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15050738","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sex- and Tissue-Specific Effects of Leukemia Inhibitory Factor on Mitochondrial Bioenergetics Following Ischemic Stroke.
Oxidative stress due to increased reactive oxygen species (ROS) formation and/or inflammation is considered to play an important role in ischemic stroke injury. Leukemia inhibitory factor (LIF) has been shown to protect both oligodendrocytes and neurons from ischemia by upregulating endogenous anti-oxidants, though the effect of ischemia and the protective role of LIF treatment in mitochondrial function have not been studied. The goal of this study was to determine whether LIF protects ischemia-induced altered mitochondrial bioenergetics in reproductively senescent aged rats of both sexes (≥18 months old), approximately equivalent to the average age of human stroke patients. Animals were euthanized at 3 days after permanent middle cerebral artery occlusion (MCAO) surgery. We found that MCAO surgery significantly reduced mitochondrial oxidative phosphorylation in both the ipsilateral striatum and prefrontal cortex in male aged rats compared to their respective contralateral regions of the brain. MCAO injury showed mitochondrial bioenergetic dysfunction only in the striatum in female rats; however, the prefrontal cortex remained unaffected to the injury. LIF-treated rats significantly prevented mitochondrial dysfunction in the striatum in male rats compared to their vehicle-treated counterparts. Collectively, MCAO-induced mitochondrial dysfunction and LIF's potential as a therapeutic biomolecule exhibited sex- and tissue-specific effects, varying between the striatum and prefrontal cortex in male and female rats.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.