{"title":"在特定运动负荷下,跑步表面差异对生理和生物力学反应的影响。","authors":"Zhiqiang Liang, Qi Shuo, Chuang Gao, Chang-Te Lin, Yufei Fang","doi":"10.3390/bioengineering12050534","DOIUrl":null,"url":null,"abstract":"<p><p>The surface properties of the running surface have an effect on physiological and biomechanical responses to exercise, but their influence on body composition, blood pressure, and knee joint kinetics during controlled sports loading is less researched. This study compared the effects of treadmill running (TR) and overground running (OR) on acute physiological and biomechanical adaptation in ten male athletes aged between 23 and 26 years old following a 30 min protocol at 75% VO<sub>2</sub>max. Pre- and post-running body composition (fat volume, protein content, and fluid distribution), blood pressure, and knee joint kinetics (total work of muscle extensors-TWMEs) were assessed using bioelectrical impedance analysis, blood pressure monitor, and isokinetic dynamometry. The results indicated that TR led to highly significant reductions in protein content with a considerable accumulation of intracellular fluid. At the same time, TR reduced knee TWME by 27.4%, and OR elevated TWME by 5.6%. No significant differences in blood pressure were observed. These findings highlight surface-specific metabolic stress and biomechanical loading patterns and show that TR augments catabolic responses and knee joint strain despite equivalent external workloads.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Running Surface Differences on Physiological and Biomechanical Responses During Specific Sports Loading.\",\"authors\":\"Zhiqiang Liang, Qi Shuo, Chuang Gao, Chang-Te Lin, Yufei Fang\",\"doi\":\"10.3390/bioengineering12050534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The surface properties of the running surface have an effect on physiological and biomechanical responses to exercise, but their influence on body composition, blood pressure, and knee joint kinetics during controlled sports loading is less researched. This study compared the effects of treadmill running (TR) and overground running (OR) on acute physiological and biomechanical adaptation in ten male athletes aged between 23 and 26 years old following a 30 min protocol at 75% VO<sub>2</sub>max. Pre- and post-running body composition (fat volume, protein content, and fluid distribution), blood pressure, and knee joint kinetics (total work of muscle extensors-TWMEs) were assessed using bioelectrical impedance analysis, blood pressure monitor, and isokinetic dynamometry. The results indicated that TR led to highly significant reductions in protein content with a considerable accumulation of intracellular fluid. At the same time, TR reduced knee TWME by 27.4%, and OR elevated TWME by 5.6%. No significant differences in blood pressure were observed. These findings highlight surface-specific metabolic stress and biomechanical loading patterns and show that TR augments catabolic responses and knee joint strain despite equivalent external workloads.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12050534\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050534","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Influence of Running Surface Differences on Physiological and Biomechanical Responses During Specific Sports Loading.
The surface properties of the running surface have an effect on physiological and biomechanical responses to exercise, but their influence on body composition, blood pressure, and knee joint kinetics during controlled sports loading is less researched. This study compared the effects of treadmill running (TR) and overground running (OR) on acute physiological and biomechanical adaptation in ten male athletes aged between 23 and 26 years old following a 30 min protocol at 75% VO2max. Pre- and post-running body composition (fat volume, protein content, and fluid distribution), blood pressure, and knee joint kinetics (total work of muscle extensors-TWMEs) were assessed using bioelectrical impedance analysis, blood pressure monitor, and isokinetic dynamometry. The results indicated that TR led to highly significant reductions in protein content with a considerable accumulation of intracellular fluid. At the same time, TR reduced knee TWME by 27.4%, and OR elevated TWME by 5.6%. No significant differences in blood pressure were observed. These findings highlight surface-specific metabolic stress and biomechanical loading patterns and show that TR augments catabolic responses and knee joint strain despite equivalent external workloads.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering