疾病发病前生物标志物轨迹的半参数联合建模。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf064
Yifei Sun, Xiwen Zhao, Kwun Chuen Gary Chan, Wanwan Xu, Heather Allore, Yize Zhao
{"title":"疾病发病前生物标志物轨迹的半参数联合建模。","authors":"Yifei Sun, Xiwen Zhao, Kwun Chuen Gary Chan, Wanwan Xu, Heather Allore, Yize Zhao","doi":"10.1093/biomtc/ujaf064","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how biomarkers change in relation to disease pathogenesis is a key area in biomedical research. We propose a semiparametric joint model to analyze the temporal evolution of biomarkers prior to the onset of disease. The model allows for a flexible biomarker trajectory that depends on two time scales: a natural time scale such as age and time to disease onset. In practice, the natural time scale often differs from time-on-study, leading to analytical challenges such as left-truncation bias. We introduce a profile kernel estimating equation approach to estimate regression coefficients and unspecified baseline mean trajectory functions. We establish the large-sample properties of the proposed estimators and conduct simulation studies to evaluate their finite-sample performance. Our method is applied to investigate brain biomarker trajectories before the onset of preclinical Alzheimer's disease. We observed a decline in cortical thickness prior to disease onset across brain regions, with APOE4 carriers showing lower levels compared to non-carriers.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117339/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semiparametric joint modeling for biomarker trajectory before disease onset.\",\"authors\":\"Yifei Sun, Xiwen Zhao, Kwun Chuen Gary Chan, Wanwan Xu, Heather Allore, Yize Zhao\",\"doi\":\"10.1093/biomtc/ujaf064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding how biomarkers change in relation to disease pathogenesis is a key area in biomedical research. We propose a semiparametric joint model to analyze the temporal evolution of biomarkers prior to the onset of disease. The model allows for a flexible biomarker trajectory that depends on two time scales: a natural time scale such as age and time to disease onset. In practice, the natural time scale often differs from time-on-study, leading to analytical challenges such as left-truncation bias. We introduce a profile kernel estimating equation approach to estimate regression coefficients and unspecified baseline mean trajectory functions. We establish the large-sample properties of the proposed estimators and conduct simulation studies to evaluate their finite-sample performance. Our method is applied to investigate brain biomarker trajectories before the onset of preclinical Alzheimer's disease. We observed a decline in cortical thickness prior to disease onset across brain regions, with APOE4 carriers showing lower levels compared to non-carriers.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解生物标志物变化与疾病发病机制的关系是生物医学研究的一个关键领域。我们提出了一个半参数联合模型来分析疾病发病前生物标志物的时间演变。该模型允许灵活的生物标志物轨迹取决于两个时间尺度:自然时间尺度,如年龄和疾病发病时间。在实践中,自然时间尺度往往不同于研究时间,导致分析上的挑战,如左截断偏差。我们引入了一种轮廓核估计方程方法来估计回归系数和未指定基线平均轨迹函数。我们建立了所提出的估计器的大样本特性,并进行模拟研究以评估其有限样本性能。我们的方法被用于研究临床前阿尔茨海默病发病前的大脑生物标志物轨迹。我们观察到,在疾病发作之前,整个大脑区域的皮质厚度下降,APOE4携带者比非携带者表现出更低的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiparametric joint modeling for biomarker trajectory before disease onset.

Understanding how biomarkers change in relation to disease pathogenesis is a key area in biomedical research. We propose a semiparametric joint model to analyze the temporal evolution of biomarkers prior to the onset of disease. The model allows for a flexible biomarker trajectory that depends on two time scales: a natural time scale such as age and time to disease onset. In practice, the natural time scale often differs from time-on-study, leading to analytical challenges such as left-truncation bias. We introduce a profile kernel estimating equation approach to estimate regression coefficients and unspecified baseline mean trajectory functions. We establish the large-sample properties of the proposed estimators and conduct simulation studies to evaluate their finite-sample performance. Our method is applied to investigate brain biomarker trajectories before the onset of preclinical Alzheimer's disease. We observed a decline in cortical thickness prior to disease onset across brain regions, with APOE4 carriers showing lower levels compared to non-carriers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信