Lianxin Wang, Ce Zhang, Yaozong Wang, Xin Yue, Yunbang Liang, Naikun Sun
{"title":"非移位股骨颈骨折检测的深度学习系统的开发和验证。","authors":"Lianxin Wang, Ce Zhang, Yaozong Wang, Xin Yue, Yunbang Liang, Naikun Sun","doi":"10.3390/bioengineering12050466","DOIUrl":null,"url":null,"abstract":"<p><p>Hip fractures pose a significant challenge to healthcare systems due to their high costs and associated mortality rates, with femoral neck fractures accounting for nearly half of all hip fractures. This study addresses the challenge of diagnosing nondisplaced femoral neck fractures, which are often difficult to detect with standard radiographs, especially in elderly patients. This research evaluates a deep learning model that employs a convolutional neural network (CNN) within a ResNet framework, designed to enhance diagnostic accuracy for nondisplaced femoral neck fractures. The model was trained and validated on a dataset of 2032 hip radiographs from two hospitals, with additional external validation performed on datasets from other institutions. The AI model achieved an accuracy of 94.8% and an Area Under Curve of 0.991 on anteroposterior pelvic/hip radiographs, outperforming emergency physicians and delivering results comparable to expert physicians. External validation confirmed the model's robust accuracy and generalizability across diverse datasets. This study underscores the potential of deep learning models to act as a supplementary tool in clinical settings, potentially reducing diagnostic errors and improving patient outcomes by facilitating a quicker diagnosis and treatment.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Deep Learning System for the Detection of Nondisplaced Femoral Neck Fractures.\",\"authors\":\"Lianxin Wang, Ce Zhang, Yaozong Wang, Xin Yue, Yunbang Liang, Naikun Sun\",\"doi\":\"10.3390/bioengineering12050466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hip fractures pose a significant challenge to healthcare systems due to their high costs and associated mortality rates, with femoral neck fractures accounting for nearly half of all hip fractures. This study addresses the challenge of diagnosing nondisplaced femoral neck fractures, which are often difficult to detect with standard radiographs, especially in elderly patients. This research evaluates a deep learning model that employs a convolutional neural network (CNN) within a ResNet framework, designed to enhance diagnostic accuracy for nondisplaced femoral neck fractures. The model was trained and validated on a dataset of 2032 hip radiographs from two hospitals, with additional external validation performed on datasets from other institutions. The AI model achieved an accuracy of 94.8% and an Area Under Curve of 0.991 on anteroposterior pelvic/hip radiographs, outperforming emergency physicians and delivering results comparable to expert physicians. External validation confirmed the model's robust accuracy and generalizability across diverse datasets. This study underscores the potential of deep learning models to act as a supplementary tool in clinical settings, potentially reducing diagnostic errors and improving patient outcomes by facilitating a quicker diagnosis and treatment.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12050466\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050466","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development and Validation of a Deep Learning System for the Detection of Nondisplaced Femoral Neck Fractures.
Hip fractures pose a significant challenge to healthcare systems due to their high costs and associated mortality rates, with femoral neck fractures accounting for nearly half of all hip fractures. This study addresses the challenge of diagnosing nondisplaced femoral neck fractures, which are often difficult to detect with standard radiographs, especially in elderly patients. This research evaluates a deep learning model that employs a convolutional neural network (CNN) within a ResNet framework, designed to enhance diagnostic accuracy for nondisplaced femoral neck fractures. The model was trained and validated on a dataset of 2032 hip radiographs from two hospitals, with additional external validation performed on datasets from other institutions. The AI model achieved an accuracy of 94.8% and an Area Under Curve of 0.991 on anteroposterior pelvic/hip radiographs, outperforming emergency physicians and delivering results comparable to expert physicians. External validation confirmed the model's robust accuracy and generalizability across diverse datasets. This study underscores the potential of deep learning models to act as a supplementary tool in clinical settings, potentially reducing diagnostic errors and improving patient outcomes by facilitating a quicker diagnosis and treatment.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering