Sarah A Alzakari, Amel Ali Alhussan, S K Towfek, Marwa Metwally, Dina Ahmed Salem
{"title":"基于深度神经网络和混合水轮厂优化算法的宫颈癌检测。","authors":"Sarah A Alzakari, Amel Ali Alhussan, S K Towfek, Marwa Metwally, Dina Ahmed Salem","doi":"10.3390/bioengineering12050478","DOIUrl":null,"url":null,"abstract":"<p><p>More than 85% of the world's cervical cancer fatalities occur in less-developed nations, causing early mortality among women. In this paper, we propose a novel approach for the early classification of cervical cancer based on a new feature selection algorithm and classification method. The new feature selection algorithm is based on a hybrid of the Waterwheel Plant Algorithm and Particle Swarm Optimization algorithms, and bWWPAPSO denotes it. Meanwhile, the new classification method is based on optimizing the parameters of a multilayer perceptron neural network (WWPAPSO+MLP). A publicly available dataset is employed to verify the effectiveness of the proposed approach. Due to this dataset's imbalance and missing values, it is preprocessed and balanced using SMOTETomek, where undersampling and oversampling were utilized. The usefulness of class imbalance and feature selection based on the classifier's specificity, sensitivity, and accuracy has been demonstrated by way of a comparative study of the proposed methodology that has been carried out. WWPAPSO+MLP achieves superior performance, with an accuracy of 97.3% and a sensitivity of 98.8%. On the other hand, several statistical tests were conducted, including the Wilcoxon signed rank test and analysis of variance (ANOVA) to confirm the effectiveness and superiority of the proposed approach.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108694/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cervical Cancer Detection Using Deep Neural Network and Hybrid Waterwheel Plant Optimization Algorithm.\",\"authors\":\"Sarah A Alzakari, Amel Ali Alhussan, S K Towfek, Marwa Metwally, Dina Ahmed Salem\",\"doi\":\"10.3390/bioengineering12050478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>More than 85% of the world's cervical cancer fatalities occur in less-developed nations, causing early mortality among women. In this paper, we propose a novel approach for the early classification of cervical cancer based on a new feature selection algorithm and classification method. The new feature selection algorithm is based on a hybrid of the Waterwheel Plant Algorithm and Particle Swarm Optimization algorithms, and bWWPAPSO denotes it. Meanwhile, the new classification method is based on optimizing the parameters of a multilayer perceptron neural network (WWPAPSO+MLP). A publicly available dataset is employed to verify the effectiveness of the proposed approach. Due to this dataset's imbalance and missing values, it is preprocessed and balanced using SMOTETomek, where undersampling and oversampling were utilized. The usefulness of class imbalance and feature selection based on the classifier's specificity, sensitivity, and accuracy has been demonstrated by way of a comparative study of the proposed methodology that has been carried out. WWPAPSO+MLP achieves superior performance, with an accuracy of 97.3% and a sensitivity of 98.8%. On the other hand, several statistical tests were conducted, including the Wilcoxon signed rank test and analysis of variance (ANOVA) to confirm the effectiveness and superiority of the proposed approach.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108694/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12050478\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050478","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Cervical Cancer Detection Using Deep Neural Network and Hybrid Waterwheel Plant Optimization Algorithm.
More than 85% of the world's cervical cancer fatalities occur in less-developed nations, causing early mortality among women. In this paper, we propose a novel approach for the early classification of cervical cancer based on a new feature selection algorithm and classification method. The new feature selection algorithm is based on a hybrid of the Waterwheel Plant Algorithm and Particle Swarm Optimization algorithms, and bWWPAPSO denotes it. Meanwhile, the new classification method is based on optimizing the parameters of a multilayer perceptron neural network (WWPAPSO+MLP). A publicly available dataset is employed to verify the effectiveness of the proposed approach. Due to this dataset's imbalance and missing values, it is preprocessed and balanced using SMOTETomek, where undersampling and oversampling were utilized. The usefulness of class imbalance and feature selection based on the classifier's specificity, sensitivity, and accuracy has been demonstrated by way of a comparative study of the proposed methodology that has been carried out. WWPAPSO+MLP achieves superior performance, with an accuracy of 97.3% and a sensitivity of 98.8%. On the other hand, several statistical tests were conducted, including the Wilcoxon signed rank test and analysis of variance (ANOVA) to confirm the effectiveness and superiority of the proposed approach.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering