利用扩散盐沉淀法开发学习免疫学的工具:大学实验室的低成本替代方案。

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Abhay Pal, Subhojit Sen
{"title":"利用扩散盐沉淀法开发学习免疫学的工具:大学实验室的低成本替代方案。","authors":"Abhay Pal, Subhojit Sen","doi":"10.1002/bmb.21900","DOIUrl":null,"url":null,"abstract":"<p><p>The Ouchterlony double immunodiffusion technique is used as a teaching tool for studying immune responses and exemplifying differences in antigen-antibody reactions. Although commonplace in undergraduate labs, standardized commercial kits limit learning experiences because they have fixed modalities of use, a low shelf-life, and impose budgetary constraints in the long-term, collectively posing an economic challenge. To mitigate these problems, this study attempts to simulate various types of 'antigen-antibody' reactions using combinations of Mg, Mn, Cu and Ag salts that form a precipitate with BaSO<sub>4</sub>. Using an optimized format of thin agar plates, different salts precipitation reactions were monitored over a time course of \"immunodiffusion\". These reactions were demonstrably versatile towards simulating (i) quantitation of differential titer among antibodies, (ii) determining serological-identity versus non-identity, (iii) quantitative demonstration of the prozone phenomenon, and finally; (iv) using double precipitin reactions to simulate combinations of antibodies in the same sample. As part of a laboratory exercise, these parameters were used to design an open-ended query aimed to check the effectiveness of student engagement and learning outcomes. Undergraduate students were able to conduct the experiment in a shorter time frame, and interpreted their observations in a multidimensional manner. This allowed teachers to add to the discussion leading to an efficient model of collaborative learning. The salt-precipitation format of \"immunodiffusion\" is thus not only economical and quick, but allows for flexibility to simulate problems that are of immediate relevance.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing tools for learning immunology using diffusion-based salt precipitation assays: A low-cost alternative for college laboratories.\",\"authors\":\"Abhay Pal, Subhojit Sen\",\"doi\":\"10.1002/bmb.21900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Ouchterlony double immunodiffusion technique is used as a teaching tool for studying immune responses and exemplifying differences in antigen-antibody reactions. Although commonplace in undergraduate labs, standardized commercial kits limit learning experiences because they have fixed modalities of use, a low shelf-life, and impose budgetary constraints in the long-term, collectively posing an economic challenge. To mitigate these problems, this study attempts to simulate various types of 'antigen-antibody' reactions using combinations of Mg, Mn, Cu and Ag salts that form a precipitate with BaSO<sub>4</sub>. Using an optimized format of thin agar plates, different salts precipitation reactions were monitored over a time course of \\\"immunodiffusion\\\". These reactions were demonstrably versatile towards simulating (i) quantitation of differential titer among antibodies, (ii) determining serological-identity versus non-identity, (iii) quantitative demonstration of the prozone phenomenon, and finally; (iv) using double precipitin reactions to simulate combinations of antibodies in the same sample. As part of a laboratory exercise, these parameters were used to design an open-ended query aimed to check the effectiveness of student engagement and learning outcomes. Undergraduate students were able to conduct the experiment in a shorter time frame, and interpreted their observations in a multidimensional manner. This allowed teachers to add to the discussion leading to an efficient model of collaborative learning. The salt-precipitation format of \\\"immunodiffusion\\\" is thus not only economical and quick, but allows for flexibility to simulate problems that are of immediate relevance.</p>\",\"PeriodicalId\":8830,\"journal\":{\"name\":\"Biochemistry and Molecular Biology Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Molecular Biology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/bmb.21900\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21900","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Ouchterlony双免疫扩散技术被用作研究免疫反应的教学工具,并举例说明抗原-抗体反应的差异。虽然标准化的商业工具包在本科实验室中很常见,但由于它们具有固定的使用方式,保质期较短,并且在长期内施加预算限制,因此限制了学习经验,共同构成了经济挑战。为了缓解这些问题,本研究试图模拟各种类型的“抗原-抗体”反应,使用Mg, Mn, Cu和Ag盐的组合与BaSO4形成沉淀。使用优化格式的薄琼脂板,在“免疫扩散”的时间过程中监测不同的盐沉淀反应。这些反应显然是通用的,可以模拟(i)抗体之间差异滴度的定量,(ii)确定血清学上的同一性与非同一性,(iii) prozone现象的定量演示,最后;(iv)使用双重沉淀反应模拟同一样品中抗体的组合。作为实验室练习的一部分,这些参数被用来设计一个开放式查询,旨在检查学生参与和学习成果的有效性。本科生能够在较短的时间内进行实验,并以多维的方式解释他们的观察结果。这使得教师可以加入讨论,从而形成一种有效的协作学习模式。因此,“免疫扩散”的盐沉淀格式不仅经济和快速,而且可以灵活地模拟直接相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing tools for learning immunology using diffusion-based salt precipitation assays: A low-cost alternative for college laboratories.

The Ouchterlony double immunodiffusion technique is used as a teaching tool for studying immune responses and exemplifying differences in antigen-antibody reactions. Although commonplace in undergraduate labs, standardized commercial kits limit learning experiences because they have fixed modalities of use, a low shelf-life, and impose budgetary constraints in the long-term, collectively posing an economic challenge. To mitigate these problems, this study attempts to simulate various types of 'antigen-antibody' reactions using combinations of Mg, Mn, Cu and Ag salts that form a precipitate with BaSO4. Using an optimized format of thin agar plates, different salts precipitation reactions were monitored over a time course of "immunodiffusion". These reactions were demonstrably versatile towards simulating (i) quantitation of differential titer among antibodies, (ii) determining serological-identity versus non-identity, (iii) quantitative demonstration of the prozone phenomenon, and finally; (iv) using double precipitin reactions to simulate combinations of antibodies in the same sample. As part of a laboratory exercise, these parameters were used to design an open-ended query aimed to check the effectiveness of student engagement and learning outcomes. Undergraduate students were able to conduct the experiment in a shorter time frame, and interpreted their observations in a multidimensional manner. This allowed teachers to add to the discussion leading to an efficient model of collaborative learning. The salt-precipitation format of "immunodiffusion" is thus not only economical and quick, but allows for flexibility to simulate problems that are of immediate relevance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信