{"title":"WHA-Net:一种低复杂度的混合模型,用于眼底图像中假晶状体水肿的准确分类。","authors":"Junpeng Pei, Yousong Wang, Mingliang Ge, Jun Li, Yixing Li, Wei Wang, Xiaohong Zhou","doi":"10.3390/bioengineering12050550","DOIUrl":null,"url":null,"abstract":"<p><p>The fundus manifestations of pseudopapilledema closely resemble those of optic disc edema, making their differentiation particularly challenging in certain clinical situations. However, rapid and accurate diagnosis is crucial for alleviating patient anxiety and guiding treatment strategies. This study proposes an efficient low-complexity hybrid model, WHA-Net, which innovatively integrates three core modules to achieve precise auxiliary diagnosis of pseudopapilledema. First, the wavelet convolution (WTC) block is introduced to enhance the model's characterization capability for vessel and optic disc edge details in fundus images through 2D wavelet transform and deep convolution. Additionally, the hybrid attention inverted residual (HAIR) block is incorporated to extract critical features such as vascular morphology, hemorrhages, and exudates. Finally, the Agent-MViT module effectively captures the continuity features of optic disc contours and retinal vessels in fundus images while reducing the computational complexity of traditional Transformers. The model was trained and evaluated on a dataset of 1793 rigorously curated fundus images, comprising 895 normal optic discs, 485 optic disc edema (ODE), and 413 pseudopapilledema (PPE) cases. On the test set, the model achieved outstanding performance, with 97.79% accuracy, 95.55% precision, 95.69% recall, and 98.53% specificity. Comparative experiments confirm the superiority of WHA-Net in classification tasks, while ablation studies validate the effectiveness and rationality of each module's combined design. This research provides a clinically valuable solution for the automated differential diagnosis of pseudopapilledema, with both computational efficiency and diagnostic reliability.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WHA-Net: A Low-Complexity Hybrid Model for Accurate Pseudopapilledema Classification in Fundus Images.\",\"authors\":\"Junpeng Pei, Yousong Wang, Mingliang Ge, Jun Li, Yixing Li, Wei Wang, Xiaohong Zhou\",\"doi\":\"10.3390/bioengineering12050550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fundus manifestations of pseudopapilledema closely resemble those of optic disc edema, making their differentiation particularly challenging in certain clinical situations. However, rapid and accurate diagnosis is crucial for alleviating patient anxiety and guiding treatment strategies. This study proposes an efficient low-complexity hybrid model, WHA-Net, which innovatively integrates three core modules to achieve precise auxiliary diagnosis of pseudopapilledema. First, the wavelet convolution (WTC) block is introduced to enhance the model's characterization capability for vessel and optic disc edge details in fundus images through 2D wavelet transform and deep convolution. Additionally, the hybrid attention inverted residual (HAIR) block is incorporated to extract critical features such as vascular morphology, hemorrhages, and exudates. Finally, the Agent-MViT module effectively captures the continuity features of optic disc contours and retinal vessels in fundus images while reducing the computational complexity of traditional Transformers. The model was trained and evaluated on a dataset of 1793 rigorously curated fundus images, comprising 895 normal optic discs, 485 optic disc edema (ODE), and 413 pseudopapilledema (PPE) cases. On the test set, the model achieved outstanding performance, with 97.79% accuracy, 95.55% precision, 95.69% recall, and 98.53% specificity. Comparative experiments confirm the superiority of WHA-Net in classification tasks, while ablation studies validate the effectiveness and rationality of each module's combined design. This research provides a clinically valuable solution for the automated differential diagnosis of pseudopapilledema, with both computational efficiency and diagnostic reliability.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12050550\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12050550","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
WHA-Net: A Low-Complexity Hybrid Model for Accurate Pseudopapilledema Classification in Fundus Images.
The fundus manifestations of pseudopapilledema closely resemble those of optic disc edema, making their differentiation particularly challenging in certain clinical situations. However, rapid and accurate diagnosis is crucial for alleviating patient anxiety and guiding treatment strategies. This study proposes an efficient low-complexity hybrid model, WHA-Net, which innovatively integrates three core modules to achieve precise auxiliary diagnosis of pseudopapilledema. First, the wavelet convolution (WTC) block is introduced to enhance the model's characterization capability for vessel and optic disc edge details in fundus images through 2D wavelet transform and deep convolution. Additionally, the hybrid attention inverted residual (HAIR) block is incorporated to extract critical features such as vascular morphology, hemorrhages, and exudates. Finally, the Agent-MViT module effectively captures the continuity features of optic disc contours and retinal vessels in fundus images while reducing the computational complexity of traditional Transformers. The model was trained and evaluated on a dataset of 1793 rigorously curated fundus images, comprising 895 normal optic discs, 485 optic disc edema (ODE), and 413 pseudopapilledema (PPE) cases. On the test set, the model achieved outstanding performance, with 97.79% accuracy, 95.55% precision, 95.69% recall, and 98.53% specificity. Comparative experiments confirm the superiority of WHA-Net in classification tasks, while ablation studies validate the effectiveness and rationality of each module's combined design. This research provides a clinically valuable solution for the automated differential diagnosis of pseudopapilledema, with both computational efficiency and diagnostic reliability.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering