Sebastian Fricke, Luuk Kortekaas, Martin Winter, Mariano Grünebaum
{"title":"介绍了一种通过摩尔通量和电池常数来鉴定和统一实验室规模氧化还原液流电池性能的实验路线。","authors":"Sebastian Fricke, Luuk Kortekaas, Martin Winter, Mariano Grünebaum","doi":"10.1002/smtd.202401670","DOIUrl":null,"url":null,"abstract":"<p><p>Redox flow batteries (RFBs) are a promising technology for grid energy storage based on their high potential for scalability, design flexibility, high efficiency, and long durability, hence great effort has been invested in this area of research. However, due to the large differences in lab-scale RFB cell design and construction as well their operational performance, fundamental studies on innovative RFB components (e.g., active materials, separators, additives) compare poorly due to the lack of standard setups, settings, and procedures. This work introduces an experimental calibration route for aqueous as well as nonaqueous RFBs based on a simple mass transport model using molar fluxes, enabling one to compare dissimilar lab-scale RFB cell setups by introducing several RFB parameters: First, K1, which summarizes the operating parameters of an RFB to identify the critical ratio (K1<sub>critical</sub>) needed for efficient charge-discharge cycling using a simple overvoltage and charge efficiency evaluation; second, the RFB cell constant ζ, quantifying the influence of a lab-scale RFB setup on its performance; and finally, K2, ultimately enabling full comparison of (idealized) K1<sub>critical</sub> operating parameters across RFB cell setups.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401670"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing an Experimental Route to Identify and Unify Lab-Scale Redox-Flow Battery Cell Performances via Molar Fluxes and Cell Constants.\",\"authors\":\"Sebastian Fricke, Luuk Kortekaas, Martin Winter, Mariano Grünebaum\",\"doi\":\"10.1002/smtd.202401670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Redox flow batteries (RFBs) are a promising technology for grid energy storage based on their high potential for scalability, design flexibility, high efficiency, and long durability, hence great effort has been invested in this area of research. However, due to the large differences in lab-scale RFB cell design and construction as well their operational performance, fundamental studies on innovative RFB components (e.g., active materials, separators, additives) compare poorly due to the lack of standard setups, settings, and procedures. This work introduces an experimental calibration route for aqueous as well as nonaqueous RFBs based on a simple mass transport model using molar fluxes, enabling one to compare dissimilar lab-scale RFB cell setups by introducing several RFB parameters: First, K1, which summarizes the operating parameters of an RFB to identify the critical ratio (K1<sub>critical</sub>) needed for efficient charge-discharge cycling using a simple overvoltage and charge efficiency evaluation; second, the RFB cell constant ζ, quantifying the influence of a lab-scale RFB setup on its performance; and finally, K2, ultimately enabling full comparison of (idealized) K1<sub>critical</sub> operating parameters across RFB cell setups.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401670\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401670\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401670","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Introducing an Experimental Route to Identify and Unify Lab-Scale Redox-Flow Battery Cell Performances via Molar Fluxes and Cell Constants.
Redox flow batteries (RFBs) are a promising technology for grid energy storage based on their high potential for scalability, design flexibility, high efficiency, and long durability, hence great effort has been invested in this area of research. However, due to the large differences in lab-scale RFB cell design and construction as well their operational performance, fundamental studies on innovative RFB components (e.g., active materials, separators, additives) compare poorly due to the lack of standard setups, settings, and procedures. This work introduces an experimental calibration route for aqueous as well as nonaqueous RFBs based on a simple mass transport model using molar fluxes, enabling one to compare dissimilar lab-scale RFB cell setups by introducing several RFB parameters: First, K1, which summarizes the operating parameters of an RFB to identify the critical ratio (K1critical) needed for efficient charge-discharge cycling using a simple overvoltage and charge efficiency evaluation; second, the RFB cell constant ζ, quantifying the influence of a lab-scale RFB setup on its performance; and finally, K2, ultimately enabling full comparison of (idealized) K1critical operating parameters across RFB cell setups.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.