{"title":"碳点的光响应发光特性及其应用研究。","authors":"Zhimeng Ma, Qiang Fu, Kailin Zhang, Shouhong Sun, Mingbo Yue","doi":"10.1039/d5mh00676g","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dots (CDs), as zero-dimensional carbon-based nanomaterials, have become a new generation of smart luminescent materials because of their tunable optical properties, excellent biocompatibility and controllable synthesis strategies. On the basis of the difference in their optical response behavior, CDs can be classified into two main systems: photoluminescent and photochromism. Photoluminescent CDs achieve luminescence, including fluorescence, room temperature phosphorescence (RTP), and thermally activated delayed fluorescence (TADF), through the modulation of the carbon core structure, surface state engineering, molecular state jumping, and crosslink-enhanced emission (CEE) mechanisms. On the other hand, photochromic CDs confer dynamic optical response properties to materials through free radical-mediated electron transfer, energy transfer modulation, or molecular isomerization. In this review, we systematically elucidate the underlying luminescence mechanisms of these two types of systems and introduce the unique properties and application prospects of photoresponsive CDs in biomedicine, catalysis, and anticounterfeiting. We summarize the latest research progress on photoresponsive CDs, analyze their material properties, and discuss the key challenges to be addressed in their future development.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on light-responsive luminescence properties of carbon dots and their applications.\",\"authors\":\"Zhimeng Ma, Qiang Fu, Kailin Zhang, Shouhong Sun, Mingbo Yue\",\"doi\":\"10.1039/d5mh00676g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon dots (CDs), as zero-dimensional carbon-based nanomaterials, have become a new generation of smart luminescent materials because of their tunable optical properties, excellent biocompatibility and controllable synthesis strategies. On the basis of the difference in their optical response behavior, CDs can be classified into two main systems: photoluminescent and photochromism. Photoluminescent CDs achieve luminescence, including fluorescence, room temperature phosphorescence (RTP), and thermally activated delayed fluorescence (TADF), through the modulation of the carbon core structure, surface state engineering, molecular state jumping, and crosslink-enhanced emission (CEE) mechanisms. On the other hand, photochromic CDs confer dynamic optical response properties to materials through free radical-mediated electron transfer, energy transfer modulation, or molecular isomerization. In this review, we systematically elucidate the underlying luminescence mechanisms of these two types of systems and introduce the unique properties and application prospects of photoresponsive CDs in biomedicine, catalysis, and anticounterfeiting. We summarize the latest research progress on photoresponsive CDs, analyze their material properties, and discuss the key challenges to be addressed in their future development.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00676g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00676g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on light-responsive luminescence properties of carbon dots and their applications.
Carbon dots (CDs), as zero-dimensional carbon-based nanomaterials, have become a new generation of smart luminescent materials because of their tunable optical properties, excellent biocompatibility and controllable synthesis strategies. On the basis of the difference in their optical response behavior, CDs can be classified into two main systems: photoluminescent and photochromism. Photoluminescent CDs achieve luminescence, including fluorescence, room temperature phosphorescence (RTP), and thermally activated delayed fluorescence (TADF), through the modulation of the carbon core structure, surface state engineering, molecular state jumping, and crosslink-enhanced emission (CEE) mechanisms. On the other hand, photochromic CDs confer dynamic optical response properties to materials through free radical-mediated electron transfer, energy transfer modulation, or molecular isomerization. In this review, we systematically elucidate the underlying luminescence mechanisms of these two types of systems and introduce the unique properties and application prospects of photoresponsive CDs in biomedicine, catalysis, and anticounterfeiting. We summarize the latest research progress on photoresponsive CDs, analyze their material properties, and discuss the key challenges to be addressed in their future development.