Aniruddha Dan, Ankita Panigrahi, Hemant Singh, Varsha Murali, Manisha Meena, Prateek Goyel, Laxmanan Karthikeyan, Superb K Misra, Nibu Varghese, Sharlene Sara Babu, Yogesh B Dalvi, Mukesh Dhanka
{"title":"设计一种基于细菌多糖的金属有机框架增强生物活性3D水凝胶,用于加速全层伤口愈合。","authors":"Aniruddha Dan, Ankita Panigrahi, Hemant Singh, Varsha Murali, Manisha Meena, Prateek Goyel, Laxmanan Karthikeyan, Superb K Misra, Nibu Varghese, Sharlene Sara Babu, Yogesh B Dalvi, Mukesh Dhanka","doi":"10.1039/d5bm00133a","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels offer numerous advantages in wound healing, making them a promising alternative to traditional wound dressings. Their biocompatibility and high water content closely resemble natural biological tissues, creating a moist environment that accelerates cell proliferation and tissue repair. Hydrogels maintain optimal hydration levels, preventing wound desiccation and promoting faster healing. Furthermore, their ability to incorporate and deliver therapeutic agents such as antibiotics, anti-inflammatory drugs, or growth factors provides a multifunctional platform for enhanced wound care. Despite these advantages, current clinical wound-dressing materials often fall short in addressing the complexities of wound healing. Hydrogels, with their customizable properties and potential for integration with emerging technologies, represent a significant opportunity to overcome these limitations and improve clinical outcomes in wound management. Herein, we developed a multi-functional Cu-MOF and tannic acid-enriched polymeric hydrogel dressing composed of gellan-gum/zein for full-thickness wound repair. The physical interactions, including electrostatic interaction and hydrogen bonding between the hydrogel components, form a stable hydrogel matrix. The hydrogel exhibits antioxidant properties and antibacterial activity, and is hemocompatible and biocompatible against L929 fibroblast cells. Furthermore, the fabricated hydrogel dressing improvised a full-thickness wound-healing process in rats. Only 1.6% of the wound area was remaining in the case of GG-Z-TA/M1-treated full-thickness wounds in rats. Histopathology images suggest the Cu-MOF-loaded hydrogels aided in extensive re-epithelialization, neovascularization, and hair follicle formation to accelerate the wound-healing process.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering a bacterial polysaccharide-based metal-organic framework-enhanced bioactive 3D hydrogel for accelerated full-thickness wound healing.\",\"authors\":\"Aniruddha Dan, Ankita Panigrahi, Hemant Singh, Varsha Murali, Manisha Meena, Prateek Goyel, Laxmanan Karthikeyan, Superb K Misra, Nibu Varghese, Sharlene Sara Babu, Yogesh B Dalvi, Mukesh Dhanka\",\"doi\":\"10.1039/d5bm00133a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels offer numerous advantages in wound healing, making them a promising alternative to traditional wound dressings. Their biocompatibility and high water content closely resemble natural biological tissues, creating a moist environment that accelerates cell proliferation and tissue repair. Hydrogels maintain optimal hydration levels, preventing wound desiccation and promoting faster healing. Furthermore, their ability to incorporate and deliver therapeutic agents such as antibiotics, anti-inflammatory drugs, or growth factors provides a multifunctional platform for enhanced wound care. Despite these advantages, current clinical wound-dressing materials often fall short in addressing the complexities of wound healing. Hydrogels, with their customizable properties and potential for integration with emerging technologies, represent a significant opportunity to overcome these limitations and improve clinical outcomes in wound management. Herein, we developed a multi-functional Cu-MOF and tannic acid-enriched polymeric hydrogel dressing composed of gellan-gum/zein for full-thickness wound repair. The physical interactions, including electrostatic interaction and hydrogen bonding between the hydrogel components, form a stable hydrogel matrix. The hydrogel exhibits antioxidant properties and antibacterial activity, and is hemocompatible and biocompatible against L929 fibroblast cells. Furthermore, the fabricated hydrogel dressing improvised a full-thickness wound-healing process in rats. Only 1.6% of the wound area was remaining in the case of GG-Z-TA/M1-treated full-thickness wounds in rats. Histopathology images suggest the Cu-MOF-loaded hydrogels aided in extensive re-epithelialization, neovascularization, and hair follicle formation to accelerate the wound-healing process.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5bm00133a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00133a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Engineering a bacterial polysaccharide-based metal-organic framework-enhanced bioactive 3D hydrogel for accelerated full-thickness wound healing.
Hydrogels offer numerous advantages in wound healing, making them a promising alternative to traditional wound dressings. Their biocompatibility and high water content closely resemble natural biological tissues, creating a moist environment that accelerates cell proliferation and tissue repair. Hydrogels maintain optimal hydration levels, preventing wound desiccation and promoting faster healing. Furthermore, their ability to incorporate and deliver therapeutic agents such as antibiotics, anti-inflammatory drugs, or growth factors provides a multifunctional platform for enhanced wound care. Despite these advantages, current clinical wound-dressing materials often fall short in addressing the complexities of wound healing. Hydrogels, with their customizable properties and potential for integration with emerging technologies, represent a significant opportunity to overcome these limitations and improve clinical outcomes in wound management. Herein, we developed a multi-functional Cu-MOF and tannic acid-enriched polymeric hydrogel dressing composed of gellan-gum/zein for full-thickness wound repair. The physical interactions, including electrostatic interaction and hydrogen bonding between the hydrogel components, form a stable hydrogel matrix. The hydrogel exhibits antioxidant properties and antibacterial activity, and is hemocompatible and biocompatible against L929 fibroblast cells. Furthermore, the fabricated hydrogel dressing improvised a full-thickness wound-healing process in rats. Only 1.6% of the wound area was remaining in the case of GG-Z-TA/M1-treated full-thickness wounds in rats. Histopathology images suggest the Cu-MOF-loaded hydrogels aided in extensive re-epithelialization, neovascularization, and hair follicle formation to accelerate the wound-healing process.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.