Yingying Nie, Cewen Hu, Xinyue Huang, Huajing Zeng, Zhilong Wang, Jiachen Liang, Jizeng Wang
{"title":"通过机械-电协同导电水凝胶加速伤口愈合。","authors":"Yingying Nie, Cewen Hu, Xinyue Huang, Huajing Zeng, Zhilong Wang, Jiachen Liang, Jizeng Wang","doi":"10.1021/acsabm.5c00523","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenge of achieving faster wound healing, we present an innovative approach using hydrogel wound dressings that leverage the mechano-electric synergistic effect. This method incorporates piezoelectric zinc oxide nanoparticles (ZnO NPs) and conductive carbon nanotubes (CNTs) into a thermosensitive poly(<i>N</i>-isopropylacrylamide) (PNIPAM) hydrogel matrix. The engineered hydrogel demonstrates exceptional mechanical strength, optimal swelling properties, enhanced antibacterial activity, and excellent biocompatibility and biosafety. Upon application to a wound site, the hydrogel undergoes temperature-induced centripetal contraction, which enhances the wound closure process. Moreover, the morphological changes in the hydrogel caused by self-contraction and alterations in skin shape can trigger a piezoelectric effect, generating stable and lasting bioelectric signals that promote fibroblast migration. Consequently, a wound approximately 1 cm<sup>2</sup> in size can nearly completely heal within 14 days, thanks to the hydrogel's multifaceted therapeutic potential, including anti-inflammatory effects, promotion of cell migration, induction of fibroblast-to-myofibroblast differentiation, and enhancement of angiogenesis. This breakthrough represents a significant advancement over conventional hydrogel wound dressings, offering considerable promise for clinical application.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"5183-5193"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Wound Healing through a Mechano-Electric Synergistic Conductive Hydrogel.\",\"authors\":\"Yingying Nie, Cewen Hu, Xinyue Huang, Huajing Zeng, Zhilong Wang, Jiachen Liang, Jizeng Wang\",\"doi\":\"10.1021/acsabm.5c00523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the challenge of achieving faster wound healing, we present an innovative approach using hydrogel wound dressings that leverage the mechano-electric synergistic effect. This method incorporates piezoelectric zinc oxide nanoparticles (ZnO NPs) and conductive carbon nanotubes (CNTs) into a thermosensitive poly(<i>N</i>-isopropylacrylamide) (PNIPAM) hydrogel matrix. The engineered hydrogel demonstrates exceptional mechanical strength, optimal swelling properties, enhanced antibacterial activity, and excellent biocompatibility and biosafety. Upon application to a wound site, the hydrogel undergoes temperature-induced centripetal contraction, which enhances the wound closure process. Moreover, the morphological changes in the hydrogel caused by self-contraction and alterations in skin shape can trigger a piezoelectric effect, generating stable and lasting bioelectric signals that promote fibroblast migration. Consequently, a wound approximately 1 cm<sup>2</sup> in size can nearly completely heal within 14 days, thanks to the hydrogel's multifaceted therapeutic potential, including anti-inflammatory effects, promotion of cell migration, induction of fibroblast-to-myofibroblast differentiation, and enhancement of angiogenesis. This breakthrough represents a significant advancement over conventional hydrogel wound dressings, offering considerable promise for clinical application.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"5183-5193\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Accelerating Wound Healing through a Mechano-Electric Synergistic Conductive Hydrogel.
To address the challenge of achieving faster wound healing, we present an innovative approach using hydrogel wound dressings that leverage the mechano-electric synergistic effect. This method incorporates piezoelectric zinc oxide nanoparticles (ZnO NPs) and conductive carbon nanotubes (CNTs) into a thermosensitive poly(N-isopropylacrylamide) (PNIPAM) hydrogel matrix. The engineered hydrogel demonstrates exceptional mechanical strength, optimal swelling properties, enhanced antibacterial activity, and excellent biocompatibility and biosafety. Upon application to a wound site, the hydrogel undergoes temperature-induced centripetal contraction, which enhances the wound closure process. Moreover, the morphological changes in the hydrogel caused by self-contraction and alterations in skin shape can trigger a piezoelectric effect, generating stable and lasting bioelectric signals that promote fibroblast migration. Consequently, a wound approximately 1 cm2 in size can nearly completely heal within 14 days, thanks to the hydrogel's multifaceted therapeutic potential, including anti-inflammatory effects, promotion of cell migration, induction of fibroblast-to-myofibroblast differentiation, and enhancement of angiogenesis. This breakthrough represents a significant advancement over conventional hydrogel wound dressings, offering considerable promise for clinical application.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.