同轴缠绕DNA封装和抛射过程的轨迹回溯。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-06-10 Epub Date: 2025-05-27 DOI:10.1021/acs.jctc.5c00137
Chung Bin Park, Bong June Sung
{"title":"同轴缠绕DNA封装和抛射过程的轨迹回溯。","authors":"Chung Bin Park, Bong June Sung","doi":"10.1021/acs.jctc.5c00137","DOIUrl":null,"url":null,"abstract":"<p><p>The coaxial spool structure of DNA has been regarded as an equilibrium conformation inside of a viral capsid. It has also been accepted that the DNA conformation inside the viral capsid should correlate strongly with the ejection of DNA out of the viral capsid. However, how the coaxial spool structure of DNA would affect the ejection kinetics remains elusive at the molecular level. In this study, we perform extensive Langevin dynamics simulations for a single polymer chain packaged within a small confinement to mimic the packaging and ejection processes of viral DNA and investigate the effects of its conformation on the ejection kinetics. We show that when the polymer chain within a small rectangular confinement is coaxially spooled, its ejection kinetics is facilitated significantly due to the <i>trajectory retracing</i>. We tune the conformation of the polymer chain inside the confinement by changing both the chain rigidity and the aspect ratio (γ) of the confinement. As either the aspect ratio (γ) decreases or the rigidity increases, the chain packaged inside the confinement is more likely to have a coaxial spool structure. And the polymer chain of the coaxial spool structure ejects quickly than chains of other conformations. We find that the coaxial spool structure enables the single chain to follow the reverse pathway of the packaging during ejection without significant structural rearrangement, thus enhancing the ejection kinetics.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"5736-5745"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory Retracing of the Packaging and Ejection Processes of Coaxially Spooled DNA.\",\"authors\":\"Chung Bin Park, Bong June Sung\",\"doi\":\"10.1021/acs.jctc.5c00137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coaxial spool structure of DNA has been regarded as an equilibrium conformation inside of a viral capsid. It has also been accepted that the DNA conformation inside the viral capsid should correlate strongly with the ejection of DNA out of the viral capsid. However, how the coaxial spool structure of DNA would affect the ejection kinetics remains elusive at the molecular level. In this study, we perform extensive Langevin dynamics simulations for a single polymer chain packaged within a small confinement to mimic the packaging and ejection processes of viral DNA and investigate the effects of its conformation on the ejection kinetics. We show that when the polymer chain within a small rectangular confinement is coaxially spooled, its ejection kinetics is facilitated significantly due to the <i>trajectory retracing</i>. We tune the conformation of the polymer chain inside the confinement by changing both the chain rigidity and the aspect ratio (γ) of the confinement. As either the aspect ratio (γ) decreases or the rigidity increases, the chain packaged inside the confinement is more likely to have a coaxial spool structure. And the polymer chain of the coaxial spool structure ejects quickly than chains of other conformations. We find that the coaxial spool structure enables the single chain to follow the reverse pathway of the packaging during ejection without significant structural rearrangement, thus enhancing the ejection kinetics.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"5736-5745\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00137\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

DNA的同轴线轴结构被认为是病毒衣壳内部的一种平衡构象。人们还认为,病毒衣壳内的DNA构象应该与病毒衣壳外的DNA喷射密切相关。然而,DNA的同轴线轴结构如何影响抛射动力学在分子水平上仍然是难以捉摸的。在这项研究中,我们对单个聚合物链进行了广泛的朗格万动力学模拟,以模拟病毒DNA的包装和喷射过程,并研究其构象对喷射动力学的影响。我们发现,当小矩形约束内的聚合物链同轴缠绕时,由于轨迹回溯,其弹射动力学显著促进。我们通过改变约束的链刚度和长径比(γ)来调整约束内聚合物链的构象。当长径比(γ)减小或刚度增加时,封装在约束内的链更有可能具有同轴阀芯结构。同轴线轴结构的聚合物链比其他构象的聚合物链喷射速度快。我们发现,同轴线轴结构使单链在弹射过程中遵循包装的反向路径而没有明显的结构重排,从而增强了弹射动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Retracing of the Packaging and Ejection Processes of Coaxially Spooled DNA.

The coaxial spool structure of DNA has been regarded as an equilibrium conformation inside of a viral capsid. It has also been accepted that the DNA conformation inside the viral capsid should correlate strongly with the ejection of DNA out of the viral capsid. However, how the coaxial spool structure of DNA would affect the ejection kinetics remains elusive at the molecular level. In this study, we perform extensive Langevin dynamics simulations for a single polymer chain packaged within a small confinement to mimic the packaging and ejection processes of viral DNA and investigate the effects of its conformation on the ejection kinetics. We show that when the polymer chain within a small rectangular confinement is coaxially spooled, its ejection kinetics is facilitated significantly due to the trajectory retracing. We tune the conformation of the polymer chain inside the confinement by changing both the chain rigidity and the aspect ratio (γ) of the confinement. As either the aspect ratio (γ) decreases or the rigidity increases, the chain packaged inside the confinement is more likely to have a coaxial spool structure. And the polymer chain of the coaxial spool structure ejects quickly than chains of other conformations. We find that the coaxial spool structure enables the single chain to follow the reverse pathway of the packaging during ejection without significant structural rearrangement, thus enhancing the ejection kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信