Hongshuang Guo, Roshan Nasare, Chen Liang, Kim Kuntze, Eugene M Terentjev, Arri Priimagi
{"title":"卤素键合液晶弹性体作为无引发剂光化学致动剂。","authors":"Hongshuang Guo, Roshan Nasare, Chen Liang, Kim Kuntze, Eugene M Terentjev, Arri Priimagi","doi":"10.1002/adma.202504551","DOIUrl":null,"url":null,"abstract":"<p><p>Photochemically driven liquid crystal elastomer (LCE) actuators require precise arrangement and sufficiently high concentration of photoswitchable molecules for effective actuation. Achieving both high photoswitch content and a high degree of molecular alignment has been challenging especially in thick samples, but is essential for future applications in soft robotics, biomedicine, and photonic technologies. In this work, this issue is addressed by combining dynamic halogen bonds with Aza-Michael addition-based polymerization, creating azobenzene-containing LCEs with multimodal actuation capabilities. These highly directional supramolecular interactions eliminate the need for a photo-initiator in the LCE fabrication process, enabling control over the azobenzene content over a wide range while maintaining a high degree of molecular alignment and dynamic programming ability. The potential of this approach is demonstrated through proof-of-concept examples such as light-guided rolling movement and underwater gripping, underscoring the versatility of the weak, dynamic halogen bonds in advancing the supramolecular design of multimodal soft actuators.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2504551"},"PeriodicalIF":27.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halogen-Bonded Liquid Crystal Elastomers as Initiator-Free Photochemical Actuators.\",\"authors\":\"Hongshuang Guo, Roshan Nasare, Chen Liang, Kim Kuntze, Eugene M Terentjev, Arri Priimagi\",\"doi\":\"10.1002/adma.202504551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photochemically driven liquid crystal elastomer (LCE) actuators require precise arrangement and sufficiently high concentration of photoswitchable molecules for effective actuation. Achieving both high photoswitch content and a high degree of molecular alignment has been challenging especially in thick samples, but is essential for future applications in soft robotics, biomedicine, and photonic technologies. In this work, this issue is addressed by combining dynamic halogen bonds with Aza-Michael addition-based polymerization, creating azobenzene-containing LCEs with multimodal actuation capabilities. These highly directional supramolecular interactions eliminate the need for a photo-initiator in the LCE fabrication process, enabling control over the azobenzene content over a wide range while maintaining a high degree of molecular alignment and dynamic programming ability. The potential of this approach is demonstrated through proof-of-concept examples such as light-guided rolling movement and underwater gripping, underscoring the versatility of the weak, dynamic halogen bonds in advancing the supramolecular design of multimodal soft actuators.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2504551\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202504551\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202504551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Halogen-Bonded Liquid Crystal Elastomers as Initiator-Free Photochemical Actuators.
Photochemically driven liquid crystal elastomer (LCE) actuators require precise arrangement and sufficiently high concentration of photoswitchable molecules for effective actuation. Achieving both high photoswitch content and a high degree of molecular alignment has been challenging especially in thick samples, but is essential for future applications in soft robotics, biomedicine, and photonic technologies. In this work, this issue is addressed by combining dynamic halogen bonds with Aza-Michael addition-based polymerization, creating azobenzene-containing LCEs with multimodal actuation capabilities. These highly directional supramolecular interactions eliminate the need for a photo-initiator in the LCE fabrication process, enabling control over the azobenzene content over a wide range while maintaining a high degree of molecular alignment and dynamic programming ability. The potential of this approach is demonstrated through proof-of-concept examples such as light-guided rolling movement and underwater gripping, underscoring the versatility of the weak, dynamic halogen bonds in advancing the supramolecular design of multimodal soft actuators.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.