Guanglong Ge, Jin Qian, Ke Xu, Chao Sun, Cheng Shi, Tengfei Hu, Bo Shen, Houbing Huang, Jiwei Zhai
{"title":"多态调制反铁电锆酸铅陶瓷优异的储能性能。","authors":"Guanglong Ge, Jin Qian, Ke Xu, Chao Sun, Cheng Shi, Tengfei Hu, Bo Shen, Houbing Huang, Jiwei Zhai","doi":"10.1002/adma.202505731","DOIUrl":null,"url":null,"abstract":"<p>Multiphase transition type antiferroelectric lead zirconate is one of the ideal candidate dielectrics for energy storage ceramic capacitors, it is challenging to fully reveal its formation and regulation mechanism, and further enhance the energy storage performance. Here, the essence of polymorphic modulation of multiphase transition antiferroelectric is proposed, and its non-ergodic relaxor phase transition nature is revealed. The polymorphic modulated antiferroelectric ceramics show a giant energy storage density of 23.73 J cm<sup>−3</sup> and an excellent efficiency of 88%, which is much superior to the commensurate and incommensurate modulated antiferroelectric phases and other dielectric ceramics. The polymorphic modulated antiferroelectric ceramic is composed of both commensurate and incommensurate modulated ferrielectric like antiferroelectric sub-grain regions. Under an electric field, relaxor ferroelectric and ferroelectric phases are successively derived from the incommensurate and commensurate antiferroelectric regions, constituting two distinct non-ergodic relaxor ferroelectric states. The independent evolution of antiferroelectric short-range to ferroelectric short-range and ferroelectric long-range, and their interaction are the key to the excellent energy storage performance of polymorphic modulated antiferroelectric ceramics. The findings offer a novel insight into the field-induced phase transition in antiferroelectric, and promote the potential applications of pulse power antiferroelectric ceramic capacitors.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 33","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent Energy Storage Performance of Polymorphic Modulated Antiferroelectric Lead Zirconate Ceramic\",\"authors\":\"Guanglong Ge, Jin Qian, Ke Xu, Chao Sun, Cheng Shi, Tengfei Hu, Bo Shen, Houbing Huang, Jiwei Zhai\",\"doi\":\"10.1002/adma.202505731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiphase transition type antiferroelectric lead zirconate is one of the ideal candidate dielectrics for energy storage ceramic capacitors, it is challenging to fully reveal its formation and regulation mechanism, and further enhance the energy storage performance. Here, the essence of polymorphic modulation of multiphase transition antiferroelectric is proposed, and its non-ergodic relaxor phase transition nature is revealed. The polymorphic modulated antiferroelectric ceramics show a giant energy storage density of 23.73 J cm<sup>−3</sup> and an excellent efficiency of 88%, which is much superior to the commensurate and incommensurate modulated antiferroelectric phases and other dielectric ceramics. The polymorphic modulated antiferroelectric ceramic is composed of both commensurate and incommensurate modulated ferrielectric like antiferroelectric sub-grain regions. Under an electric field, relaxor ferroelectric and ferroelectric phases are successively derived from the incommensurate and commensurate antiferroelectric regions, constituting two distinct non-ergodic relaxor ferroelectric states. The independent evolution of antiferroelectric short-range to ferroelectric short-range and ferroelectric long-range, and their interaction are the key to the excellent energy storage performance of polymorphic modulated antiferroelectric ceramics. The findings offer a novel insight into the field-induced phase transition in antiferroelectric, and promote the potential applications of pulse power antiferroelectric ceramic capacitors.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 33\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202505731\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202505731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Excellent Energy Storage Performance of Polymorphic Modulated Antiferroelectric Lead Zirconate Ceramic
Multiphase transition type antiferroelectric lead zirconate is one of the ideal candidate dielectrics for energy storage ceramic capacitors, it is challenging to fully reveal its formation and regulation mechanism, and further enhance the energy storage performance. Here, the essence of polymorphic modulation of multiphase transition antiferroelectric is proposed, and its non-ergodic relaxor phase transition nature is revealed. The polymorphic modulated antiferroelectric ceramics show a giant energy storage density of 23.73 J cm−3 and an excellent efficiency of 88%, which is much superior to the commensurate and incommensurate modulated antiferroelectric phases and other dielectric ceramics. The polymorphic modulated antiferroelectric ceramic is composed of both commensurate and incommensurate modulated ferrielectric like antiferroelectric sub-grain regions. Under an electric field, relaxor ferroelectric and ferroelectric phases are successively derived from the incommensurate and commensurate antiferroelectric regions, constituting two distinct non-ergodic relaxor ferroelectric states. The independent evolution of antiferroelectric short-range to ferroelectric short-range and ferroelectric long-range, and their interaction are the key to the excellent energy storage performance of polymorphic modulated antiferroelectric ceramics. The findings offer a novel insight into the field-induced phase transition in antiferroelectric, and promote the potential applications of pulse power antiferroelectric ceramic capacitors.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.