{"title":"基瓦什-诺克斯-麦考夫猜想","authors":"Luyining Gan , Jie Han","doi":"10.1016/j.jctb.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Given <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo><</mo><mi>k</mi></math></span> and <span><math><mi>δ</mi><mo>≥</mo><mn>0</mn></math></span>, let <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> be the decision problem for the existence of perfect matchings in <em>n</em>-vertex <em>k</em>-uniform hypergraphs with minimum <em>ℓ</em>-degree at least <span><math><mi>δ</mi><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. For <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> was one of the first NP-complete problems by Karp. Keevash, Knox and Mycroft conjectured that <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> is in P for every <span><math><mi>δ</mi><mo>></mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></msup></math></span> and verified the case <span><math><mi>ℓ</mi><mo>=</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>.</div><div>In this paper we show that this problem can be reduced to the study of the minimum <em>ℓ</em>-degree condition forcing the existence of fractional perfect matchings. Together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for <span><math><mi>ℓ</mi><mo>≥</mo><mn>0.4</mn><mi>k</mi></math></span>. Moreover, we also supply an algorithm that outputs a perfect matching, provided that one exists.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 214-242"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Keevash-Knox-Mycroft conjecture\",\"authors\":\"Luyining Gan , Jie Han\",\"doi\":\"10.1016/j.jctb.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo><</mo><mi>k</mi></math></span> and <span><math><mi>δ</mi><mo>≥</mo><mn>0</mn></math></span>, let <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> be the decision problem for the existence of perfect matchings in <em>n</em>-vertex <em>k</em>-uniform hypergraphs with minimum <em>ℓ</em>-degree at least <span><math><mi>δ</mi><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. For <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> was one of the first NP-complete problems by Karp. Keevash, Knox and Mycroft conjectured that <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> is in P for every <span><math><mi>δ</mi><mo>></mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></msup></math></span> and verified the case <span><math><mi>ℓ</mi><mo>=</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>.</div><div>In this paper we show that this problem can be reduced to the study of the minimum <em>ℓ</em>-degree condition forcing the existence of fractional perfect matchings. Together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for <span><math><mi>ℓ</mi><mo>≥</mo><mn>0.4</mn><mi>k</mi></math></span>. Moreover, we also supply an algorithm that outputs a perfect matching, provided that one exists.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"174 \",\"pages\":\"Pages 214-242\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000395\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000395","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Given and , let be the decision problem for the existence of perfect matchings in n-vertex k-uniform hypergraphs with minimum ℓ-degree at least . For , was one of the first NP-complete problems by Karp. Keevash, Knox and Mycroft conjectured that is in P for every and verified the case .
In this paper we show that this problem can be reduced to the study of the minimum ℓ-degree condition forcing the existence of fractional perfect matchings. Together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for . Moreover, we also supply an algorithm that outputs a perfect matching, provided that one exists.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.