基瓦什-诺克斯-麦考夫猜想

IF 1.2 1区 数学 Q1 MATHEMATICS
Luyining Gan , Jie Han
{"title":"基瓦什-诺克斯-麦考夫猜想","authors":"Luyining Gan ,&nbsp;Jie Han","doi":"10.1016/j.jctb.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Given <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>&lt;</mo><mi>k</mi></math></span> and <span><math><mi>δ</mi><mo>≥</mo><mn>0</mn></math></span>, let <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> be the decision problem for the existence of perfect matchings in <em>n</em>-vertex <em>k</em>-uniform hypergraphs with minimum <em>ℓ</em>-degree at least <span><math><mi>δ</mi><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. For <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> was one of the first NP-complete problems by Karp. Keevash, Knox and Mycroft conjectured that <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> is in P for every <span><math><mi>δ</mi><mo>&gt;</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></msup></math></span> and verified the case <span><math><mi>ℓ</mi><mo>=</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>.</div><div>In this paper we show that this problem can be reduced to the study of the minimum <em>ℓ</em>-degree condition forcing the existence of fractional perfect matchings. Together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for <span><math><mi>ℓ</mi><mo>≥</mo><mn>0.4</mn><mi>k</mi></math></span>. Moreover, we also supply an algorithm that outputs a perfect matching, provided that one exists.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 214-242"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Keevash-Knox-Mycroft conjecture\",\"authors\":\"Luyining Gan ,&nbsp;Jie Han\",\"doi\":\"10.1016/j.jctb.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>&lt;</mo><mi>k</mi></math></span> and <span><math><mi>δ</mi><mo>≥</mo><mn>0</mn></math></span>, let <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> be the decision problem for the existence of perfect matchings in <em>n</em>-vertex <em>k</em>-uniform hypergraphs with minimum <em>ℓ</em>-degree at least <span><math><mi>δ</mi><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. For <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> was one of the first NP-complete problems by Karp. Keevash, Knox and Mycroft conjectured that <span><math><mtext>PM</mtext><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> is in P for every <span><math><mi>δ</mi><mo>&gt;</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mi>ℓ</mi></mrow></msup></math></span> and verified the case <span><math><mi>ℓ</mi><mo>=</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>.</div><div>In this paper we show that this problem can be reduced to the study of the minimum <em>ℓ</em>-degree condition forcing the existence of fractional perfect matchings. Together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for <span><math><mi>ℓ</mi><mo>≥</mo><mn>0.4</mn><mi>k</mi></math></span>. Moreover, we also supply an algorithm that outputs a perfect matching, provided that one exists.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"174 \",\"pages\":\"Pages 214-242\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000395\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000395","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定1≤l <;k,δ≥0,设PM(k, l,δ)为最小n-度且至少δ(n−k−l)的n顶点k-一致超图中存在完美匹配的判定问题。当k≥3时,PM(k, r,0)是Karp的第一个np完全问题。Keevash, Knox和Mycroft推测,对于每一个δ>;1−(1−1/k)k−r, PM(k, r, r)都在P中,并验证了r =k−1的情况。在本文中,我们证明了这个问题可以简化为对迫使分数阶完美匹配存在的最小阶条件的研究。结合已有的分数阶完美匹配结果,解决了Keevash, Knox和Mycroft对于r≥0.4k的猜想。此外,我们还提供了一个算法,如果存在完美匹配,则输出完美匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Keevash-Knox-Mycroft conjecture
Given 1<k and δ0, let PM(k,,δ) be the decision problem for the existence of perfect matchings in n-vertex k-uniform hypergraphs with minimum -degree at least δ(nk). For k3, PM(k,,0) was one of the first NP-complete problems by Karp. Keevash, Knox and Mycroft conjectured that PM(k,,δ) is in P for every δ>1(11/k)k and verified the case =k1.
In this paper we show that this problem can be reduced to the study of the minimum -degree condition forcing the existence of fractional perfect matchings. Together with existing results on fractional perfect matchings, this solves the conjecture of Keevash, Knox and Mycroft for 0.4k. Moreover, we also supply an algorithm that outputs a perfect matching, provided that one exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信