{"title":"基于对立学习PSO算法的水风电光伏多蓄互补系统短期优化调度","authors":"Yaoyao He , Ning Xian","doi":"10.1016/j.apenergy.2025.126125","DOIUrl":null,"url":null,"abstract":"<div><div>The introduction of energy storage systems in multi-energy complementary systems ensures efficient energy use and distribution, enhancing the system’s economic benefits. However, current research not only lacks the application of energy storage in large-scale hydro–wind–PV hybrid systems, but also uses only one type of energy storage system in the complementary system, neglecting the synergistic effect between various energy storage systems. To address this research gap, this study proposes a hydro–wind–PV joint scheduling model that considers the coordinated optimization of pumped storage and battery storage. Through this synergy, the energy storage systems can further optimize the exploitation of energy storage potential and improve energy utilization. Additionally, a particle swarm optimization algorithm based on opposite-based learning (PSO-OBL) is proposed, tailored for short-term optimization. The model and algorithm are validated through their application to a power grid in the southwest region of China. The results demonstrate that the integration of pumped storage and battery storage significantly enhances the system’s economic efficiency, and the PSO-OBL algorithm outperforms traditional algorithms in both convergence and solution quality. By analyzing 4 typical days, the findings show that multiple energy storage systems can effectively cooperate under varying environmental conditions, further improving energy self-sufficiency and maximizing the benefits of energy storage. Compared with the traditional model, the system’s economic efficiency can be improved by a maximum of 3.01 %, and the load self-sufficiency rate is increased by 2.32 %. This study provides practical reference for optimal scheduling of multiple energy storage systems.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"394 ","pages":"Article 126125"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term optimal scheduling of hydro–wind–PV and multi-storage complementary systems based on opposition-based learning PSO algorithm\",\"authors\":\"Yaoyao He , Ning Xian\",\"doi\":\"10.1016/j.apenergy.2025.126125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The introduction of energy storage systems in multi-energy complementary systems ensures efficient energy use and distribution, enhancing the system’s economic benefits. However, current research not only lacks the application of energy storage in large-scale hydro–wind–PV hybrid systems, but also uses only one type of energy storage system in the complementary system, neglecting the synergistic effect between various energy storage systems. To address this research gap, this study proposes a hydro–wind–PV joint scheduling model that considers the coordinated optimization of pumped storage and battery storage. Through this synergy, the energy storage systems can further optimize the exploitation of energy storage potential and improve energy utilization. Additionally, a particle swarm optimization algorithm based on opposite-based learning (PSO-OBL) is proposed, tailored for short-term optimization. The model and algorithm are validated through their application to a power grid in the southwest region of China. The results demonstrate that the integration of pumped storage and battery storage significantly enhances the system’s economic efficiency, and the PSO-OBL algorithm outperforms traditional algorithms in both convergence and solution quality. By analyzing 4 typical days, the findings show that multiple energy storage systems can effectively cooperate under varying environmental conditions, further improving energy self-sufficiency and maximizing the benefits of energy storage. Compared with the traditional model, the system’s economic efficiency can be improved by a maximum of 3.01 %, and the load self-sufficiency rate is increased by 2.32 %. This study provides practical reference for optimal scheduling of multiple energy storage systems.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"394 \",\"pages\":\"Article 126125\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925008554\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925008554","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Short-term optimal scheduling of hydro–wind–PV and multi-storage complementary systems based on opposition-based learning PSO algorithm
The introduction of energy storage systems in multi-energy complementary systems ensures efficient energy use and distribution, enhancing the system’s economic benefits. However, current research not only lacks the application of energy storage in large-scale hydro–wind–PV hybrid systems, but also uses only one type of energy storage system in the complementary system, neglecting the synergistic effect between various energy storage systems. To address this research gap, this study proposes a hydro–wind–PV joint scheduling model that considers the coordinated optimization of pumped storage and battery storage. Through this synergy, the energy storage systems can further optimize the exploitation of energy storage potential and improve energy utilization. Additionally, a particle swarm optimization algorithm based on opposite-based learning (PSO-OBL) is proposed, tailored for short-term optimization. The model and algorithm are validated through their application to a power grid in the southwest region of China. The results demonstrate that the integration of pumped storage and battery storage significantly enhances the system’s economic efficiency, and the PSO-OBL algorithm outperforms traditional algorithms in both convergence and solution quality. By analyzing 4 typical days, the findings show that multiple energy storage systems can effectively cooperate under varying environmental conditions, further improving energy self-sufficiency and maximizing the benefits of energy storage. Compared with the traditional model, the system’s economic efficiency can be improved by a maximum of 3.01 %, and the load self-sufficiency rate is increased by 2.32 %. This study provides practical reference for optimal scheduling of multiple energy storage systems.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.