水分动力学及其对碱-硅反应诱发膨胀的影响:一项综合实验室研究

O.D. Olajide , M.R. Nokken , L.F.M. Sanchez
{"title":"水分动力学及其对碱-硅反应诱发膨胀的影响:一项综合实验室研究","authors":"O.D. Olajide ,&nbsp;M.R. Nokken ,&nbsp;L.F.M. Sanchez","doi":"10.1016/j.cement.2025.100146","DOIUrl":null,"url":null,"abstract":"<div><div>Moisture availability is crucial for initiating and progressing alkali-silica reaction (ASR) in concrete. As a result, moisture control has often been adopted as a mitigation strategy in maintaining ASR-affected concrete. Selecting effective maintenance strategies requires a deep understanding of the moisture dynamics between internal moisture in concrete and its environment, and influence on ASR, which remains incompletely explored. To evaluate this interplay, 180 concrete cylinders incorporating a reference reactive aggregate (i.e., Spratt) were manufactured and stored at distinct conditions: i.e., three different temperatures (21°C, 38°C and 60°C) and five relative humidities (100 % RH, 90 % RH, 82 % RH, 75 % RH, and 62 % RH). The internal and external relative humidity, length, and mass change were monitored for up to a year. Results indicate that the amount of water used for cement hydration is sufficient to trigger the reaction, regardless of the subsequent exposure condition. However, the rate of ASR-induced development is influenced by the internal relative humidity, which changes with time based on the external relative humidity and temperature. Additionally, the minimum moisture (i.e., RH threshold) required to cause significant deleterious effects from ASR was assessed and confirmed to be temperature-dependent.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"20 ","pages":"Article 100146"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture dynamics and influence on alkali-silica reaction induced expansion: A comprehensive laboratory study\",\"authors\":\"O.D. Olajide ,&nbsp;M.R. Nokken ,&nbsp;L.F.M. Sanchez\",\"doi\":\"10.1016/j.cement.2025.100146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Moisture availability is crucial for initiating and progressing alkali-silica reaction (ASR) in concrete. As a result, moisture control has often been adopted as a mitigation strategy in maintaining ASR-affected concrete. Selecting effective maintenance strategies requires a deep understanding of the moisture dynamics between internal moisture in concrete and its environment, and influence on ASR, which remains incompletely explored. To evaluate this interplay, 180 concrete cylinders incorporating a reference reactive aggregate (i.e., Spratt) were manufactured and stored at distinct conditions: i.e., three different temperatures (21°C, 38°C and 60°C) and five relative humidities (100 % RH, 90 % RH, 82 % RH, 75 % RH, and 62 % RH). The internal and external relative humidity, length, and mass change were monitored for up to a year. Results indicate that the amount of water used for cement hydration is sufficient to trigger the reaction, regardless of the subsequent exposure condition. However, the rate of ASR-induced development is influenced by the internal relative humidity, which changes with time based on the external relative humidity and temperature. Additionally, the minimum moisture (i.e., RH threshold) required to cause significant deleterious effects from ASR was assessed and confirmed to be temperature-dependent.</div></div>\",\"PeriodicalId\":100225,\"journal\":{\"name\":\"CEMENT\",\"volume\":\"20 \",\"pages\":\"Article 100146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEMENT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666549225000192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549225000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水分的可用性对于混凝土中碱-硅反应(ASR)的发生和发展至关重要。因此,在维护受asr影响的混凝土时,通常采用湿度控制作为缓解策略。选择有效的维护策略需要深入了解混凝土内部水分与其环境之间的水分动态,以及对ASR的影响,这方面的研究尚未完全深入。为了评估这种相互作用,制造了180个包含参考反应性骨料(即Spratt)的混凝土圆柱体,并在不同的条件下储存:即三种不同的温度(21°C, 38°C和60°C)和五种相对湿度(100% RH, 90% RH, 82% RH, 75% RH和62% RH)。内部和外部的相对湿度,长度和质量变化监测长达一年。结果表明,无论随后的暴露条件如何,用于水泥水化的水量足以引发反应。然而,asr诱发的发育速率受内部相对湿度的影响,内部相对湿度在外部相对湿度和温度的基础上随时间变化。此外,对引起ASR显著有害影响所需的最小湿度(即RH阈值)进行了评估,并确认其与温度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moisture dynamics and influence on alkali-silica reaction induced expansion: A comprehensive laboratory study
Moisture availability is crucial for initiating and progressing alkali-silica reaction (ASR) in concrete. As a result, moisture control has often been adopted as a mitigation strategy in maintaining ASR-affected concrete. Selecting effective maintenance strategies requires a deep understanding of the moisture dynamics between internal moisture in concrete and its environment, and influence on ASR, which remains incompletely explored. To evaluate this interplay, 180 concrete cylinders incorporating a reference reactive aggregate (i.e., Spratt) were manufactured and stored at distinct conditions: i.e., three different temperatures (21°C, 38°C and 60°C) and five relative humidities (100 % RH, 90 % RH, 82 % RH, 75 % RH, and 62 % RH). The internal and external relative humidity, length, and mass change were monitored for up to a year. Results indicate that the amount of water used for cement hydration is sufficient to trigger the reaction, regardless of the subsequent exposure condition. However, the rate of ASR-induced development is influenced by the internal relative humidity, which changes with time based on the external relative humidity and temperature. Additionally, the minimum moisture (i.e., RH threshold) required to cause significant deleterious effects from ASR was assessed and confirmed to be temperature-dependent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信