串联太阳能电池与热再生电化学装置相结合的混合系统提高太阳能利用效率

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Liqiong Qu, Yuewu Huang, Lu Yan, Qinger Wang
{"title":"串联太阳能电池与热再生电化学装置相结合的混合系统提高太阳能利用效率","authors":"Liqiong Qu,&nbsp;Yuewu Huang,&nbsp;Lu Yan,&nbsp;Qinger Wang","doi":"10.1016/j.renene.2025.123558","DOIUrl":null,"url":null,"abstract":"<div><div>An innovative solar-powered integrated system is proposed, combining a perovskite/homojunction tin sulfide (PSC/SnS) tandem solar cell, a solar selective absorber (SSA), and thermally regenerative electrochemical cycles/refrigerators (TRECs-TRERs) to maximize solar energy utilization. The PSC/SnS tandem solar cell (TSC), with well-matched bandgaps, efficiently converts a wider solar spectrum into electricity, while the SSA harnesses unabsorbed spectral components to drive cascaded TRECs-TRERs, providing additional cooling alongside power generation. Mathematical models incorporating irreversible physical and chemical processes are developed to elucidate the interaction between the TSC and the TRECs-TRERs system. Comprehensive analysis identifies key parameters influencing system performance, including operating temperature, defect density, doping density, work function of contact materials, regenerative efficiency, and internal resistance of TRECs-TRERs. The hybrid system maintains relatively stable efficiency under fluctuating operating temperatures, mitigating typical high-temperature degradation. Optimized parameters yield a maximum output power density of 368.1 W·m-<sup>2</sup> and a maximum energy efficiency of 36.81 %, demonstrating a 57.76 % enhancement over standalone PSC. This study provides valuable guidance the design of high-efficiency solar energy systems with integrated heat and power management.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"252 ","pages":"Article 123558"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced solar energy utilization in a hybrid system integrating tandem solar cell and thermally regenerative electrochemical devices\",\"authors\":\"Liqiong Qu,&nbsp;Yuewu Huang,&nbsp;Lu Yan,&nbsp;Qinger Wang\",\"doi\":\"10.1016/j.renene.2025.123558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An innovative solar-powered integrated system is proposed, combining a perovskite/homojunction tin sulfide (PSC/SnS) tandem solar cell, a solar selective absorber (SSA), and thermally regenerative electrochemical cycles/refrigerators (TRECs-TRERs) to maximize solar energy utilization. The PSC/SnS tandem solar cell (TSC), with well-matched bandgaps, efficiently converts a wider solar spectrum into electricity, while the SSA harnesses unabsorbed spectral components to drive cascaded TRECs-TRERs, providing additional cooling alongside power generation. Mathematical models incorporating irreversible physical and chemical processes are developed to elucidate the interaction between the TSC and the TRECs-TRERs system. Comprehensive analysis identifies key parameters influencing system performance, including operating temperature, defect density, doping density, work function of contact materials, regenerative efficiency, and internal resistance of TRECs-TRERs. The hybrid system maintains relatively stable efficiency under fluctuating operating temperatures, mitigating typical high-temperature degradation. Optimized parameters yield a maximum output power density of 368.1 W·m-<sup>2</sup> and a maximum energy efficiency of 36.81 %, demonstrating a 57.76 % enhancement over standalone PSC. This study provides valuable guidance the design of high-efficiency solar energy systems with integrated heat and power management.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"252 \",\"pages\":\"Article 123558\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148125012200\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125012200","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种创新的太阳能集成系统,结合了钙钛矿/均结硫化锡(PSC/SnS)串联太阳能电池、太阳能选择性吸收剂(SSA)和热再生电化学循环/制冷机(TRECs-TRERs),以最大限度地利用太阳能。PSC/SnS串联太阳能电池(TSC)具有良好匹配的带隙,可以有效地将更宽的太阳光谱转化为电能,而SSA利用未吸收的光谱成分驱动级联trec - trers,在发电的同时提供额外的冷却。建立了包含不可逆物理和化学过程的数学模型,以阐明TSC与TRECs-TRERs系统之间的相互作用。综合分析确定了影响系统性能的关键参数,包括工作温度、缺陷密度、掺杂密度、接触材料的功函数、再生效率和TRECs-TRERs的内阻。混合动力系统在工作温度波动的情况下保持相对稳定的效率,减轻了典型的高温退化。优化后的参数产生的最大输出功率密度为368.1 W·m-2,最大能量效率为36.81%,比独立PSC提高了57.76%。该研究为高效太阳能热电源集成系统的设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced solar energy utilization in a hybrid system integrating tandem solar cell and thermally regenerative electrochemical devices
An innovative solar-powered integrated system is proposed, combining a perovskite/homojunction tin sulfide (PSC/SnS) tandem solar cell, a solar selective absorber (SSA), and thermally regenerative electrochemical cycles/refrigerators (TRECs-TRERs) to maximize solar energy utilization. The PSC/SnS tandem solar cell (TSC), with well-matched bandgaps, efficiently converts a wider solar spectrum into electricity, while the SSA harnesses unabsorbed spectral components to drive cascaded TRECs-TRERs, providing additional cooling alongside power generation. Mathematical models incorporating irreversible physical and chemical processes are developed to elucidate the interaction between the TSC and the TRECs-TRERs system. Comprehensive analysis identifies key parameters influencing system performance, including operating temperature, defect density, doping density, work function of contact materials, regenerative efficiency, and internal resistance of TRECs-TRERs. The hybrid system maintains relatively stable efficiency under fluctuating operating temperatures, mitigating typical high-temperature degradation. Optimized parameters yield a maximum output power density of 368.1 W·m-2 and a maximum energy efficiency of 36.81 %, demonstrating a 57.76 % enhancement over standalone PSC. This study provides valuable guidance the design of high-efficiency solar energy systems with integrated heat and power management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信