{"title":"Yamabe型流弱解的存在性","authors":"Sitao Zhang","doi":"10.1016/j.nonrwa.2025.104418","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a doubly nonlinear parabolic equation, which is the Yamabe type heat flow on a bounded regular domain in Euclidean space. We show that under suitable assumptions on the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> one has a weak approximate discrete Morse flow for the Yamabe type heat flow on any time interval. We show the existence of a weak solution to the Yamabe type heat flow.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104418"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a weak solution to the Yamabe type flow\",\"authors\":\"Sitao Zhang\",\"doi\":\"10.1016/j.nonrwa.2025.104418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study a doubly nonlinear parabolic equation, which is the Yamabe type heat flow on a bounded regular domain in Euclidean space. We show that under suitable assumptions on the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> one has a weak approximate discrete Morse flow for the Yamabe type heat flow on any time interval. We show the existence of a weak solution to the Yamabe type heat flow.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"87 \",\"pages\":\"Article 104418\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S146812182500104X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182500104X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence of a weak solution to the Yamabe type flow
In this paper, we study a doubly nonlinear parabolic equation, which is the Yamabe type heat flow on a bounded regular domain in Euclidean space. We show that under suitable assumptions on the initial data one has a weak approximate discrete Morse flow for the Yamabe type heat flow on any time interval. We show the existence of a weak solution to the Yamabe type heat flow.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.