Lijing Sun , Suyun Liu , Renjie Sun , Jinshan Li , Aiqun Yu , Adison Wong , Liangcai Lin , Cuiying Zhang
{"title":"毕赤酵母中2-苯乙醇高水平从头合成的代谢重编程和计算辅助蛋白质工程","authors":"Lijing Sun , Suyun Liu , Renjie Sun , Jinshan Li , Aiqun Yu , Adison Wong , Liangcai Lin , Cuiying Zhang","doi":"10.1016/j.synbio.2025.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>2-Phenylethanol (2-PE), an aromatic compound with a characteristic rose fragrance, is extensively used in the food and cosmetic industries as a flavoring and fragrance agent. Due to limitations in obtaining 2-PE from natural plant sources, microbial cell factories offer a promising alternative for sustainable biosynthesis. In this study, <em>Pichia pastoris</em> was engineered to efficiently synthesize 2-PE. Using computer-assisted predictions of interactions between the key phenylpyruvate decarboxylase KDC2 and its substrates or products, an optimal enzyme variant was rationally designed to boost 2-PE production. Additionally, the shikimic acid pathway was enhanced, and a dynamic regulation promoter was employed to reduce competition from alternative pathways. These strategies significantly increased metabolic flux toward 2-PE production, achieving a titer of 2.81 g/L and 45.8-fold improvement over the non-engineered strain. By integrating controlled carbon feeding and in situ extraction to alleviate acetic acid inhibition and product toxicity, the recombinant strain achieved a final 2-PE titer of 7.10 g/L and a yield of 0.14 g/g glucose, the highest reported microbial production to date. This study highlights the significant potential of <em>P. pastoris</em> as a versatile cell factory for the green biosynthesis of 2-PE and other natural products.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 3","pages":"Pages 1027-1037"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic reprogramming and computation-aided protein engineering for high-level de novo biosynthesis for 2-phenylethanol in Pichia pastoris\",\"authors\":\"Lijing Sun , Suyun Liu , Renjie Sun , Jinshan Li , Aiqun Yu , Adison Wong , Liangcai Lin , Cuiying Zhang\",\"doi\":\"10.1016/j.synbio.2025.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>2-Phenylethanol (2-PE), an aromatic compound with a characteristic rose fragrance, is extensively used in the food and cosmetic industries as a flavoring and fragrance agent. Due to limitations in obtaining 2-PE from natural plant sources, microbial cell factories offer a promising alternative for sustainable biosynthesis. In this study, <em>Pichia pastoris</em> was engineered to efficiently synthesize 2-PE. Using computer-assisted predictions of interactions between the key phenylpyruvate decarboxylase KDC2 and its substrates or products, an optimal enzyme variant was rationally designed to boost 2-PE production. Additionally, the shikimic acid pathway was enhanced, and a dynamic regulation promoter was employed to reduce competition from alternative pathways. These strategies significantly increased metabolic flux toward 2-PE production, achieving a titer of 2.81 g/L and 45.8-fold improvement over the non-engineered strain. By integrating controlled carbon feeding and in situ extraction to alleviate acetic acid inhibition and product toxicity, the recombinant strain achieved a final 2-PE titer of 7.10 g/L and a yield of 0.14 g/g glucose, the highest reported microbial production to date. This study highlights the significant potential of <em>P. pastoris</em> as a versatile cell factory for the green biosynthesis of 2-PE and other natural products.</div></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"10 3\",\"pages\":\"Pages 1027-1037\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X25000675\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000675","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic reprogramming and computation-aided protein engineering for high-level de novo biosynthesis for 2-phenylethanol in Pichia pastoris
2-Phenylethanol (2-PE), an aromatic compound with a characteristic rose fragrance, is extensively used in the food and cosmetic industries as a flavoring and fragrance agent. Due to limitations in obtaining 2-PE from natural plant sources, microbial cell factories offer a promising alternative for sustainable biosynthesis. In this study, Pichia pastoris was engineered to efficiently synthesize 2-PE. Using computer-assisted predictions of interactions between the key phenylpyruvate decarboxylase KDC2 and its substrates or products, an optimal enzyme variant was rationally designed to boost 2-PE production. Additionally, the shikimic acid pathway was enhanced, and a dynamic regulation promoter was employed to reduce competition from alternative pathways. These strategies significantly increased metabolic flux toward 2-PE production, achieving a titer of 2.81 g/L and 45.8-fold improvement over the non-engineered strain. By integrating controlled carbon feeding and in situ extraction to alleviate acetic acid inhibition and product toxicity, the recombinant strain achieved a final 2-PE titer of 7.10 g/L and a yield of 0.14 g/g glucose, the highest reported microbial production to date. This study highlights the significant potential of P. pastoris as a versatile cell factory for the green biosynthesis of 2-PE and other natural products.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.