革新低功耗效率:揭示Mg2Ge作为源材料在双栅垂直TFET设计中的潜力

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Varun Mishra , Anant Negi , Vikas Rathi , Yogesh Kumar Verma , Chandni Tiwari
{"title":"革新低功耗效率:揭示Mg2Ge作为源材料在双栅垂直TFET设计中的潜力","authors":"Varun Mishra ,&nbsp;Anant Negi ,&nbsp;Vikas Rathi ,&nbsp;Yogesh Kumar Verma ,&nbsp;Chandni Tiwari","doi":"10.1016/j.micrna.2025.208214","DOIUrl":null,"url":null,"abstract":"<div><div>Driven by the continuous miniaturization of device geometries and the increasing demand for higher switching speeds to minimize power dissipation, the tunnel field-effect transistor (TFET) presents a viable alternative to the conventional MOSFET. This study undertakes a comprehensive analysis of a Double-Gate Vertical TFET (DG-VTFET) architecture, comparatively evaluating silicon (Si) and magnesium germanide (Mg<sub>2</sub>Ge) as source materials. Exploiting the band-to-band tunneling (BTBT) mechanism and, for the first time, employing the low-bandgap material Mg<sub>2</sub>Ge (0.69 eV at room temperature, significantly lower than the 1.12 eV bandgap of Si), demonstrably superior performance is achieved compared to a conventional Si-based vertical TFET. Specifically, enhancements are observed in ON-state current (I<sub>ON</sub>), average subthreshold swing (SS), threshold voltage (V<sub>th</sub>), and current switching ratio, yielding values of 0.04 mA, 35.60 mV/dec, 0.282 V, and 4.405 × 10<sup>11</sup>, respectively. These results underscore the potential of the Mg<sub>2</sub>Ge-based VTFET for low-power applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208214"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing low-power efficiency: Unveiling the potential of Mg2Ge as source material in double gate vertical TFET design\",\"authors\":\"Varun Mishra ,&nbsp;Anant Negi ,&nbsp;Vikas Rathi ,&nbsp;Yogesh Kumar Verma ,&nbsp;Chandni Tiwari\",\"doi\":\"10.1016/j.micrna.2025.208214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Driven by the continuous miniaturization of device geometries and the increasing demand for higher switching speeds to minimize power dissipation, the tunnel field-effect transistor (TFET) presents a viable alternative to the conventional MOSFET. This study undertakes a comprehensive analysis of a Double-Gate Vertical TFET (DG-VTFET) architecture, comparatively evaluating silicon (Si) and magnesium germanide (Mg<sub>2</sub>Ge) as source materials. Exploiting the band-to-band tunneling (BTBT) mechanism and, for the first time, employing the low-bandgap material Mg<sub>2</sub>Ge (0.69 eV at room temperature, significantly lower than the 1.12 eV bandgap of Si), demonstrably superior performance is achieved compared to a conventional Si-based vertical TFET. Specifically, enhancements are observed in ON-state current (I<sub>ON</sub>), average subthreshold swing (SS), threshold voltage (V<sub>th</sub>), and current switching ratio, yielding values of 0.04 mA, 35.60 mV/dec, 0.282 V, and 4.405 × 10<sup>11</sup>, respectively. These results underscore the potential of the Mg<sub>2</sub>Ge-based VTFET for low-power applications.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"206 \",\"pages\":\"Article 208214\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

由于器件几何形状的不断小型化和对更高开关速度以最小化功耗的需求不断增加,隧道场效应晶体管(TFET)提供了传统MOSFET的可行替代方案。本研究对双栅垂直TFET (DG-VTFET)结构进行了全面分析,比较评估了硅(Si)和锗化镁(Mg2Ge)作为源材料。利用带对带隧道(BTBT)机制,并首次采用低带隙材料Mg2Ge(室温下0.69 eV,显著低于Si的1.12 eV带隙),与传统的Si基垂直TFET相比,取得了明显的优越性能。具体来说,在导通电流(ION)、平均亚阈值摆幅(SS)、阈值电压(Vth)和电流开关比方面观察到增强,产生值分别为0.04 mA、35.60 mV/dec、0.282 V和4.405 × 1011。这些结果强调了基于mg2ge的VTFET在低功耗应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing low-power efficiency: Unveiling the potential of Mg2Ge as source material in double gate vertical TFET design
Driven by the continuous miniaturization of device geometries and the increasing demand for higher switching speeds to minimize power dissipation, the tunnel field-effect transistor (TFET) presents a viable alternative to the conventional MOSFET. This study undertakes a comprehensive analysis of a Double-Gate Vertical TFET (DG-VTFET) architecture, comparatively evaluating silicon (Si) and magnesium germanide (Mg2Ge) as source materials. Exploiting the band-to-band tunneling (BTBT) mechanism and, for the first time, employing the low-bandgap material Mg2Ge (0.69 eV at room temperature, significantly lower than the 1.12 eV bandgap of Si), demonstrably superior performance is achieved compared to a conventional Si-based vertical TFET. Specifically, enhancements are observed in ON-state current (ION), average subthreshold swing (SS), threshold voltage (Vth), and current switching ratio, yielding values of 0.04 mA, 35.60 mV/dec, 0.282 V, and 4.405 × 1011, respectively. These results underscore the potential of the Mg2Ge-based VTFET for low-power applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信