{"title":"双吸收剂硫系锑基太阳能电池的优化:实现28.4%转换效率的综合参数优化","authors":"Harshit Saxena , Jaspinder Kaur , Rikmantra Basu , Ajay Kumar Sharma , Jaya Madan , Rahul Pandey","doi":"10.1016/j.micrna.2025.208215","DOIUrl":null,"url":null,"abstract":"<div><div>Antimony Chalcogenides have recently gained prominence as preferable substitutes of hybrid halide perovskites for solar cell implementations because of their phase stability, high absorption coefficient, tunable bandgap and enhanced resilience to environmental degradation effects. They are relatively inexpensive and abundant in nature as well. This study focuses on comparing the photovoltaic parameters of the Antimony chalcogenides-based perovskite solar cell (PSC) with a back surface field layer (BSF) with the photovoltaic parameters of cell without BSF layer. While the study aims to analyse the effect of adding a BSF layer, we further refine the device architecture by calibrating parameters including thickness, doping concentrations and defect densities of the various layers incorporated in the device. The proposed model has double absorber layer (Sb<sub>2</sub>S<sub>3</sub> and Sb<sub>2</sub>Se<sub>3</sub>) and incorporates BSF layer (WSe<sub>2</sub>) to enhance photo-absorption and increase efficiency of solar cell. The model has been investigated using SCAPS-1D software. The proposed model is p<sup>+</sup>-WSe<sub>2</sub>/p-Sb<sub>2</sub>S<sub>3</sub>/n-Sb<sub>2</sub>Se<sub>3</sub>/n-WS<sub>2</sub> (With BSF) and p-Sb<sub>2</sub>S<sub>3</sub>/n-Sb<sub>2</sub>Se<sub>3</sub>/n-WS<sub>2</sub> (without BSF). The structure without the BSF layer gives an optimized PCE of 25.06 % while the structure with BSF layer gives an optimized PCE of approximately 28.4 %. These optimized structures provide a comprehensive framework for developing non-toxic, durable and highly efficient photovoltaic devices utilizing chalcogenide perovskites. This work also offers valuable insights into bridging the gap between simulation-based approaches and real-world applications while addressing practical challenges in device implementation.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208215"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of double absorber antimony chalcogenide-based solar cells: A comprehensive parametric optimization to achieve 28.4 % conversion efficiency\",\"authors\":\"Harshit Saxena , Jaspinder Kaur , Rikmantra Basu , Ajay Kumar Sharma , Jaya Madan , Rahul Pandey\",\"doi\":\"10.1016/j.micrna.2025.208215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimony Chalcogenides have recently gained prominence as preferable substitutes of hybrid halide perovskites for solar cell implementations because of their phase stability, high absorption coefficient, tunable bandgap and enhanced resilience to environmental degradation effects. They are relatively inexpensive and abundant in nature as well. This study focuses on comparing the photovoltaic parameters of the Antimony chalcogenides-based perovskite solar cell (PSC) with a back surface field layer (BSF) with the photovoltaic parameters of cell without BSF layer. While the study aims to analyse the effect of adding a BSF layer, we further refine the device architecture by calibrating parameters including thickness, doping concentrations and defect densities of the various layers incorporated in the device. The proposed model has double absorber layer (Sb<sub>2</sub>S<sub>3</sub> and Sb<sub>2</sub>Se<sub>3</sub>) and incorporates BSF layer (WSe<sub>2</sub>) to enhance photo-absorption and increase efficiency of solar cell. The model has been investigated using SCAPS-1D software. The proposed model is p<sup>+</sup>-WSe<sub>2</sub>/p-Sb<sub>2</sub>S<sub>3</sub>/n-Sb<sub>2</sub>Se<sub>3</sub>/n-WS<sub>2</sub> (With BSF) and p-Sb<sub>2</sub>S<sub>3</sub>/n-Sb<sub>2</sub>Se<sub>3</sub>/n-WS<sub>2</sub> (without BSF). The structure without the BSF layer gives an optimized PCE of 25.06 % while the structure with BSF layer gives an optimized PCE of approximately 28.4 %. These optimized structures provide a comprehensive framework for developing non-toxic, durable and highly efficient photovoltaic devices utilizing chalcogenide perovskites. This work also offers valuable insights into bridging the gap between simulation-based approaches and real-world applications while addressing practical challenges in device implementation.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"206 \",\"pages\":\"Article 208215\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277301232500144X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232500144X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Optimization of double absorber antimony chalcogenide-based solar cells: A comprehensive parametric optimization to achieve 28.4 % conversion efficiency
Antimony Chalcogenides have recently gained prominence as preferable substitutes of hybrid halide perovskites for solar cell implementations because of their phase stability, high absorption coefficient, tunable bandgap and enhanced resilience to environmental degradation effects. They are relatively inexpensive and abundant in nature as well. This study focuses on comparing the photovoltaic parameters of the Antimony chalcogenides-based perovskite solar cell (PSC) with a back surface field layer (BSF) with the photovoltaic parameters of cell without BSF layer. While the study aims to analyse the effect of adding a BSF layer, we further refine the device architecture by calibrating parameters including thickness, doping concentrations and defect densities of the various layers incorporated in the device. The proposed model has double absorber layer (Sb2S3 and Sb2Se3) and incorporates BSF layer (WSe2) to enhance photo-absorption and increase efficiency of solar cell. The model has been investigated using SCAPS-1D software. The proposed model is p+-WSe2/p-Sb2S3/n-Sb2Se3/n-WS2 (With BSF) and p-Sb2S3/n-Sb2Se3/n-WS2 (without BSF). The structure without the BSF layer gives an optimized PCE of 25.06 % while the structure with BSF layer gives an optimized PCE of approximately 28.4 %. These optimized structures provide a comprehensive framework for developing non-toxic, durable and highly efficient photovoltaic devices utilizing chalcogenide perovskites. This work also offers valuable insights into bridging the gap between simulation-based approaches and real-world applications while addressing practical challenges in device implementation.